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Abstract

We model an R&D race in which investors sequentially attempt to achieve an inno-

vation using a risky technology that produces outcomes with a lag. This lag creates a

tradeoff between the incentive to invest in a potentially rewarding technology and the risk

of being preempted by competitors. In equilibrium, players alternate between periods of

strictly decreasing investment and investment breaks, which vanish when the outcome lag

is small enough. By contrast, without an outcome lag investment is constant until the

common belief that the innovation is feasible reaches a threshold, after which investment

stops forever. We thus identify a novel economic force that drives fluctuations in R&D

spending. While socially optimal investment is also non-monotonic with an outcome lag,

the equilibrium is inefficient. Non-monotonic investment patterns persist when the out-

come lag is uncertain, when investment costs are convex, and when investors decide both

when and how much to invest.
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1 Introduction

Research and development is a risky business: It involves a race to achieve an innovation,

using experimentation technologies that often require substantial time to produce results

and, in the best-case scenario, still require numerous trials before yielding a success. The

time it takes for an experiment to yield results, i.e., the outcome lag, varies depending on the

nature of the experiment, but is often significant. For example, the median time from the

first human trial to marketing authorization for a new medical drug is estimated to be 7.3

years.1 Outcome lags can be even longer in fields like physics. In space exploration, missions

frequently take over two decades to yield results, not including the time needed to design and

build the spacecraft.2 In astronomy, long development times are needed to build measuring

instruments and collect data.

Such outcome lags amplify the risks associated with investment in research and devel-

opment. A case in point is the 1995 discovery of the first exoplanet by Michel Mayor and

his PhD student Didier Queloz, made using the ELODIE spectrograph, which Mayor began

developing five years earlier. Mayor and Queloz were not alone in the race to discover exo-

planets; several other teams had been scanning the skies since the 1970s. When Mayor began

work on ELODIE in 1990, he was thus fully aware that others were also searching, even if none

had yet succeeded. To understand the tradeoff faced by potential investors in the presence

of an outcome lag, imagine a first-year PhD student in the early 1980’s choosing a research

topic. One bold option is to join Mayor in the search for exoplanets. Success would guarantee

a stellar scientific career. But this path involves two major risks. First, exoplanets might

not exist. Second, other teams might be on the verge of making the discovery, preempting

the student’s contribution. Faced with these two risks—failure and preemption—the student

might opt for a safer, if less groundbreaking, research agenda. By 1992, when Queloz began

his PhD, the tradeoff had shifted. On the one hand, hopes of finding an exoplanet were lower,

as a decade of searching the skies had turned up nothing. On the other hand, the same

history had discouraged many competitors. The key question Queloz faced was whether the
1See Martin et al. (2017) and de Jong et al. (2024).
2For example, the New Horizons probe, launched in 2006, passed Pluto in 2015 and is expected to explore

the Kuiper Belt in 2025. Similarly, the JUICE probe, launched in 2005 aboard an Ariane 5 rocket, is expected

to arrive in Jupiter’s orbit in 2031 to study its icy moons.

2



pessimism induced by past failures dominated the strategic value of reduced competition. As

it turned out, Queloz made the right bet. His decision to pursue the exoplanet search led to

the historic discovery that earned him and Mayor the 2019 Nobel Prize in Physics.

Despite their obvious relevance, the impact of outcome lags on dynamic investment has

been largely overlooked in the microeconomic literature.3 This paper aims to fill that gap by

studying R&D investment over time in settings where firms compete to be the first to achieve

an innovation, using technologies that generate outcomes only after a delay. While one could

construct a three-period model with a one-period outcome lag that effectively highlights the

key trade-offs faced by investors in the exoplanet anecdote, it remains insufficient to capture

the full range of possible dynamics induced by outcome lags. We therefore develop an infinite-

horizon model that accommodates an arbitrary outcome lag. Besides its immediate findings,

our framework also offers a versatile tool that can be applied or extended in future work

studying strategic interactions with outcome lags.

Specifically, we analyze a continuous-time model in which a continuum of agents sequen-

tially try to achieve a success by investing a fraction of their unit endowment in a costly

technology. The arrival of a success is the only source of payoff, and the game ends after the

first success. The technology produces outcomes with a lag ∆, in the sense that the outcome

of an investment made at time t, whether a success or a failure, only materializes at t + ∆.

Success may or may not be feasible. If it is feasible, its instantaneous Poisson arrival rate

is proportional to the amount of investment made ∆ time units ago. If success is infeasible,

all investment is wasted. Agents start with a common prior, and actions and outcomes are

publicly observed, so that they hold a common belief about the feasibility of success at all

times. Conditionally on no success arriving, i.e., on the game continuing, players gradually

become more pessimistic about the feasibility of success. We analyze two distinct scenarios.

First, we consider the case of a single funding agency that coordinates individual investments

and receives the payoff in case of success. This problem requires the application of optimal-

control techniques with a lagged control variable, which are non-standard. Next, we examine

the strategic setting where each agent decides how much to invest by best-responding to the
3It is worth noting, however, that Kydland and Prescott (1982) analyze an equilibrium growth model with

outcome lags and show that such lags contribute to fluctuations in aggregate investment.

3



investment decisions of her predecessors and receives the payoff in case of success.4

Our main findings are as follows. When there is no outcome lag, both problems yield the

same solution: All agents invest their total endowment in the technology until the common

belief reaches a critical threshold, at which point investment stops forever. The introduction of

an outcome lag kills this cutoff structure. For any positive value of ∆, the optimal investment

dynamics become non-monotonic. The funding agency alternates between finite periods of

decreasing investment and finite periods of increasing investment. In equilibrium, when ∆

is sufficiently large, players cycle between phases of positive, strictly decreasing, investment

and periods of no investment, which we refer to as investment breaks. We show that longer

outcome lags lead to longer and more frequent investment breaks. This occurs because the

outcome lag effectively creates competition between each player at time t and all players in

the interval [t −∆, t). Thus as ∆ increases, competition intensifies. When ∆ is large given

players’ optimism about the feasibility of success, some investors may choose not to invest

if the likelihood of being preempted by a past competitor is too high. As the period of

no investment extends, the risk of preemption gradually decreases until investment becomes

attractive again. This results in a non-monotonic pattern: For every player who chooses not

to invest, there exists a strictly more pessimistic player who does. For small outcome lags,

investment breaks disappear. In this case, players continue investing, though at a gradually

decreasing rate as their optimism wanes, despite the decreasing risk of preemption. While the

total amount of investment is the same in equilibrium and in the funding-agency solution, the

equilibrium is always inefficient. The reason is that, unlike strategic investors, the forward-

looking funding agency knows that there will be future opportunities for investment. As a

result, the agency has fewer incentives to rush investment and can better manage the cost of

duplication by decreasing investment during certain periods and increasing it again once the

risk of duplication has sufficiently declined. Our results provide a novel, strategic, explanation

for the empirically documented fluctuations and breaks in R&D investment.5

We analyze three extensions of our model to assess the robustness of our findings.
4The agency problem is a decision problem of experimentation, as the agency faces no competition and

takes into account the impact of its current investment on its future beliefs and payoffs. In contrast, strategic

investors compete with each other but do not experiment, as they play only once.
5See the related-literature section.
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- In R&D contexts, firms may not know the outcome lag exactly. At best, they may

be able to estimate a time window within which the outcome is likely to materialize.

To account for this uncertainty, we extend our model by assuming that players only

know the distribution of the outcome lag. In the absence of a success, they continuously

update their beliefs about both the length of the lag and the feasibility of the technology.

We show that, as in the case of a known outcome lag, investment breaks still emerge in

equilibrium when the lag is sufficiently long.

- Standard investment models assume convex costs associated with adjusting capital.

As Eisner and Strotz (1963) highlighted in their seminal work, under convex costs and

divisible investment projects, there is no technological reason to expect frequent episodes

of zero investment.6 We analyze a version of our model with convex investment costs,

and confirm both the latter intuition and the results of our baseline model: There are

no investment breaks in equilibrium, but investment remains non-monotonic, provided

certain conditions on the outcome lag are met.

- Finally, as Pindyck (1991) noted, a crucial yet often overlooked characteristic of invest-

ment expenditures is that they can be delayed. This flexibility allows firms to wait for

new information about prices, costs, and other market conditions before committing re-

sources. We extend our model to a setting where agents invest only once but can decide

when and how much to invest. If several agents achieve success simultaneously, they

share the payoff from the innovation equally. We find that when ∆ is sufficiently large,

equilibrium investment dynamics become extremely lumpy: A positive mass of agents

invests every ∆ periods until they become too pessimistic, at which point investment

stops forever.

Related literature. Our main result is that the fear of preemption caused by outcome lags

can give rise to lumpy investment dynamics. Empirical evidence of lumpy investment has been

found in US data by Wang and Zhang (2025), who analyze annual panel data between 1968

and 2020, and document that firm-level R&D investments are lumpy, marked by periods of

inaction followed by sharp increases in R&D expenditures. Similarly, Nilsen and Schiantarelli
6A common implication of relaxing the assumption of convex adjustment cost in the neoclassical investment

model is that investment may occur in lumps.
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(2003) observe investment breaks in Norwegian data, where 21% of their observations report

zero equipment investment. Cooper et al. (1999) also provide evidence that the probability

of a plant experiencing a large investment episode increases in the time elapsed since the last

such episode, suggesting that periods of large investment are often followed by periods of low

investment. Doms and Dunne (1998) document the distributions of investment adjustment

for a sample of over 13,700 manufacturing plants drawn from over 300 four-digit industries in

the US. They find evidence of lumpy investment, i.e., that a large portion of investment at

the plant level is concentrated in a few episodes.

We model the innovation technology as a two-armed exponential bandit with conclusive

breakthroughs à la Keller, Rady and Cripps (2005), albeit with an outcome lag. Therefore,

our model is technically related to the literature on strategic experimentation, to which we

contribute by introducing an outcome lag into the model.7 While e.g. Bolton and Harris

(1999), Keller and Rady (2010), and Boyarchenko (2019) study models of gradual learning,

which may be well-suited for research and development applications, we have chosen the

conclusive-news setting for tractability.

Our game is a race for innovation. This relates our paper to the vast literature on com-

petition and learning, initiated by the works of Reinganum (1981) and Fudenberg and Tirole

(1985) (see also Choi (1991), Malueg and Tsutsui (1997), Bobtcheff and Mariotti (2012), Ar-

genziano and Schmidt-Dengler (2014), and Das and Klein (2024)). In much of this literature,

players compete to be the first to invest. In contrast, in our model, players only care about

being the first to succeed, while the timing of investment is irrelevant. Interestingly, some

investment-timing papers also find non-monotonic equilibria. The intensity of competition is

non-monotonic over time in the preemption game of Bobtcheff and Mariotti (2012), in which

two potential competitors invest at random secret times. Argenziano and Schmidt-Dengler

(2014) also find that the investment dynamics may not be monotonic in time in a model
7The bandit games analyzed in the literature differ in several dimensions: the type of the risky action

(“good-news” vs. “bad-news” models), the news process (which may be conclusive or gradual), as well as

the information players have on each other’s actions and outcomes. Private information in experimentation

games has been studied, among others, by Rosenberg, Solan and Vieille (2007), Bonatti and Hörner (2011),

Heidhues, Rady and Strack (2015), and Marlats and Ménager (2021). See Bergemann and Välimäki (2008) for

applications of such bandit games in economics and finance, and Hörner and Skrzypacz (2016) for a review of

more recent references.
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where the investment cost decreases with time.

In our model, the outcome lag implies that players make investment decisions while being

uncertain as to their competitor’s position in the race, but there is no private information. The

effects of private information in races for innovation have been studied by many papers (see for

instance Moscarini and Squintani (2010), Hopenhayn and Squintani (2016), Bobtcheff, Bolte,

and Mariotti (2017), and Kocourek and Kovac (2023)). In some of them, players strategically

decide when to disclose information about their own successes. Bobtcheff, Bolte, and Mariotti

(2017) analyze a model where researchers obtain private successes and decide how long to

let their ideas mature before disclosing them. Kocourek and Kovac (2023) find that firms

engaged in a patent race may chose to hide information about their private successes when

they need two successes to complete an innovation.

Finally, our model is related to the model studied in Gordon, Marlats, and Ménager

(2021), where a team of partners work together to achieve a project that is commonly known

to be feasible. Players learn immediately whether they succeed but observe their partners’

outcomes only after a fixed lag. While the unique symmetric equilibrium in their model also

exhibits periodic effort behavior, with alternating phases of maximal and minimal effort, the

driving force underlying the non-monotonicity of effort is free-riding, which is absent from our

model. In their model, players delay costly investment to see whether one of their partners

has already completed the project, while in our model, they delay investment out of fear of

being preempted.

The remainder of the paper is organized as follows. Section 2 sets up the model. Section 3

analyzes the problem of a single funding agency. In Section 4, we characterize the essentially

unique equilibrium and show that it is inefficient from the perspective of the funding agency.

In Section 5, we explore several variations of the model and conclude in Section 6. Proofs are

gathered in the Appendix.

2 The set-up

There is a continuum of agents, indexed by t ∈ [0,+∞), who live in continuous time, and

discount the future at a common rate r > 0. At each time t, agent t invests the fraction

kt ∈ [0, 1] of her unit resource endowment in a costly and risky technology that produces
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lagged outcomes. Investing kt immediately costs αkt, with α > 0, but is the only way to

achieve an innovation and obtain a positive payoff. The innovation is achieved at the first

time investment yields a success. In that case, the agent who made the successful investment

receives a lump sum of 1 and the innovation process stops. Investment outcomes occur with

an outcome lag ∆ > 0; thus, if the technology is good, investing kt yields a success at time

t+∆ at the first jump of a time-inhomogeneous Poisson process with instantaneous rate λkt,

where λ > α. Therefore, if a success arrives at time t, agents who invested between t−∆ and

t will not receive any payoff, even if their investment is successful. The technology is risky

because it can also be bad, in which case investing in it will never produce a success.

An investment profile is a function k : R+ → [0, 1]. In order to guarantee that agents

can always continuously update their beliefs based on the observation of past actions and

outcomes, we restrict the analysis to admissible investment profiles, defined as profiles k such

that
∫ t
t ktdt is well defined for every t ≤ t.

Agents observe the whole history of actions and outcomes but do not know whether the

technology is good unless a success has arrived. The public belief that the technology is good

conditional on no success having arrived at time t is denoted pt, with p0 ∈ (0, 1) the common

prior belief. As an agent’s investment operates on the Poisson process with lag ∆, the ex-ante

probability of a success arriving before time t is p0(1 − e−λ
∫ (t−∆)1t≥∆
0 ksds). Therefore, the

public belief at time t is:

pt =
p0e

−λ
∫ (t−∆)1t≥∆
0 ksds

1− p0 + p0e−λ
∫ (t−∆)1t≥∆
0 ksds

, (1)

and follows the law of motion:

ṗt = −pt(1− pt)λkt−∆1t≥∆. (2)

As the investment process stops after the first success, investing at time t may yield a

positive payoff only if the technology is good and no success arrives between t and t+∆. The

probability at time t that both conditions are satisfied is given by:8

µt := pte
−λ

∫ t
(t−∆)1t≥∆

ksds
, (3)

8Let B̄t denote the event “no success arrives before time t”, and G the event “the technology is good”. If

agent t has the opportunity to invest, B̄t is true. Hence µt = P (B̄t+∆ ∩ G | B̄t) = P (B̄t+∆ | G ∩ B̄t)P (G |

B̄t) = e
−λ

∫ t
(t−∆)1t≥∆

ksds
pt.
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which we refer to as the attractiveness of investment for agent t, reflecting its positive depen-

dence on the agent’s optimism and negative sensitivity to the risk of preemption.

Finally, when the integral
∫ +∞
0 ktdt is well-defined, we refer to it as the total investment

given profile k. By integrating (2) over the interval [0,+∞), we establish a direct relationship

between the total investment and the asymptotic value of the common belief, denoted as

p∞(k): ∫ +∞

0
ktdt =

1

λ
ln

(
Ω(p∞(k))

Ω(p0)

)
, (4)

where Ω(p) := 1−p
p .

To fix ideas, let us consider a single player who must decide how much to invest in the

technology. Investing an amount k entails an immediate cost of αk and yields a reward of 1

with a lag of ∆, provided that a success arrives, which occurs at rate λk if the technology is

good. The single player’s expected payoff is therefore given by:

v(k) := −αk + e−r∆λkp0.

It follows immediately that the single player will optimally invest the maximum amount

(k = 1) if her initial optimism about the technology is sufficiently high, i.e., if p0 > α
λe

r∆.

Conversely, if this condition is not met, the single player chooses not to invest at all. The

threshold value,

p :=
α

λ
er∆,

is referred to as the single-player cutoff, and represents the critical level of optimism required

for a single player to invest.

3 The funding agency problem

We begin by examining the problem faced by a funding agency that coordinates and

subsidizes individual investments while receiving a payoff of 1 upon the first success. Given

an investment profile k, if a success occurs at time t < ∞, the funding agency’s payoff is:

e−rt −
∫ t

0
e−rsαksds,

while it is −
∫∞
0 e−rsαksds if a success never arrives. The probability that no success arrives

before t is 1 if the technology is bad, and e−λ
∫ (t−∆)≥
0 ksds if the technology is good. The
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expected payoff to the funding agency is thus:9

W (k) =

∫ ∞

0
e−rt (1− p0 + p0e

−λ
∫ (t−∆)1t≥∆
0 ksds)︸ ︷︷ ︸

Probability that no success ar-

rives before t

( −αkt + λkt−∆1t≥∆pt︸ ︷︷ ︸
Expected instantaneous re-

ward at time t

)dt. (5)

The funding agency’s problem is an optimal control problem with delay in the state

variable pt, which makes it difficult to solve in full generality. In the Appendix, we prove the

existence of an optimal investment policy k̂ and apply Pontryagin’s principle to derive key

properties of k̂. Here, we take a heuristic dynamic programming approach to illustrate the

tradeoffs faced by the agency at time t and to provide intuition for the characteristics of the

optimal policy.

Investing kt immediately costs the agency αktdt. If a success arrives before t + ∆, this

investment is a pure loss as the agency’s objective would have been achieved anyway. Oth-

erwise, two payoff-relevant events might occur: Either a success arrives at time t+∆, which

yields a discounted payoff of e−r∆, or it does not. As the funding agency is forward-looking, it

knows that, in the latter case, the investment process will go on, offering other opportunities

of positive payoffs. As a success arrives at time t+∆ with rate λkt if the technology is good,

the first-order net benefit of investment at time t is

(
−αkt + λktµte

−r∆(1− wt+∆)
)
dt, (6)

where the attractiveness of investment µt is defined in (3), and wt+∆ is the continuation payoff

in t+∆. The agency thus faces a clear trade-off: balancing the immediate cost of investment

against the probability of achieving success at t+∆, while avoiding wasteful investment when

success is likely before t+∆.

Expression (6) has two major implications. First, investment stops forever if pt ≤ p. To

see why, observe that the marginal net benefit of investment is always (weakly) smaller than

−α + λe−r∆pt. Indeed, the funding agency can guarantee a payoff of 0 by never investing,

which implies wt+∆ ≥ 0, and the probability µt is by construction weakly smaller than the

current belief. As pt is weakly decreasing, if pt ≤ p, the marginal net benefit of investment

will always be negative after time t, so that investment stops immediately. An immediate

consequence is that there is no investment at all if the prior belief p0 is lower than p. Another,
9See Lemma 2 in Section A for the detailed calculations.
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less immediate, consequence is that, on path, the belief always remains above the critical cutoff

p. The second major implication is that the funding agency does not stop investment as long

as pt > p, which causes the belief to converge to p. The reason is as follows. If investment

stops forever starting at some time τ , then three consequences directly follow: (i) the belief

reaches its limit value at τ+∆, (ii) the continuation payoff at τ+∆ is wτ+∆ = 0, and (iii) the

risk of wasteful investment starts decreasing after τ , which causes µt to increase and match

the belief in τ +∆. The net marginal benefit of investment in τ +∆ is thus

−α+ λe−r∆pτ+∆,

which is strictly positive if pτ+∆ > p. Therefore, the funding agency has future incentives to

invest as long as the belief is larger than p.

Building on these observations and considering that the total amount of investment de-

pends on the limit belief by (4), we can state the following proposition:

Proposition 1. For every ∆ ≥ 0, the funding agency’s problem has a solution k̂. The total

investment in k̂ is

τ̂(p0) :=
1

λ
max

{
0, ln

(
Ω(p)

Ω(p0)

)}
.

Proof. See Section A.2 in the Appendix.

The remaining question is how optimally to allocate τ̂(p0) over time when p0 > p. As the

risk of wasteful investment is very low right at the outset of the game, it is optimal for the

funding agency to invest 1 at time 0 and for some time afterwards. By Proposition 1, this

initial period of full investment must stop by time τ̂(p0). We are thus left with two possible

candidates for the optimal policy: (i) a decreasing policy, with decreasing investment over

time; and (ii) a non-monotonic policy, with fluctuating investment over time.

Without an outcome lag, there is no risk of wasteful investment. Thus, the optimal policy

is a particular decreasing policy where all agents invest 1 up to time τ̂(p0) and 0 afterwards

(i.e., a cutoff policy).10 In sharp contrast, we prove that, with an outcome lag, the optimal
10When ∆ = 0, the funding agency’s objective (5) simplifies to W (k) =

∫∞
0

e−rt(1−p0+p0e
−λ

∫ t
0 ksds)kt(−α+

λpt)dt. Clearly, as long as pt > α/λ, the integrand remains positive, making full investment optimal (k̂t = 1).

Since pt strictly decreases as long as k̂t = 1, it reaches p in finite time τ , after which it is optimal to stop

investment.
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policy is non-monotonic, exhibiting what we shall informally refer to as investment waves.

Given that the marginal investment cost α is constant and pessimism increases over time, the

declining part of a wave is intuitive: The funding agency reduces investment to ensure that

the decrease in the risk of wasteful investment offsets the agency’s growing pessimism about

the technology. The subsequent rise in investment is less intuitive, but can be explained by the

fact that investment has previously dropped so much that the risk of duplication has become

small enough, making the agency willing to increase investment despite heightened pessimism.

Investment waves, therefore, emerge from the interplay between growing pessimism and a

decreasing risk of investment duplication.

Proposition 2 (Investment waves). Let p0 > p. In the agency problem, the optimal policy k̂

is non-monotonic if and only if the outcome lag is positive.

Proof. See Section A.3 in the Appendix.

We now turn to the strategic analysis of the model and compare the equilibrium with the

agency’s optimal solution.

4 The strategic problem

In this section, we analyze the problem where each player determines her investment by

best-responding to past investments. Since player t invests only at time t, an action for player

t is kt ∈ [0, 1], and an action profile is a function k : R+ → [0, 1]. As before, we restrict our

analysis to admissible action profiles, ensuring that
∫ t
t ktdt is well-defined for every t ≤ t.

At time t, it is common knowledge that no success has occurred yet, thus that all invest-

ments made by players in the interval [0, (t−∆)1t≥∆) were unsuccessful. However, player t

recognizes the possibility of being preempted by one of the players in [(t−∆)1t≥∆, t). Thus,

investing kt will yield a payoff of 1 at time t + ∆ if and only if the following conditions are

met: 1) no success arrives between t and t + ∆, 2) the technology is good and 3) player t’s

investment is successful. Moreover, regardless of the outcome, the investment immediately

incurs a cost of αkt. Letting k−t denote the investment profile of all players in [0, t), the
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expected payoff for player t is given by:

u(kt;k−t) := −αkt︸ ︷︷ ︸
instantaneous cost

+ e−r∆λktµt︸ ︷︷ ︸
expected benefit

, (7)

which can conveniently be rewritten u(kt,k−t) = λe−r∆kt(µt − p). The linearity in kt in the

payoff expression implies that the best response of player t to k−t depends on the attractive-

ness of investment as follows:

kt


= 1 if µt > p,

∈ [0, 1] if µt = p,

= 0 if µt < p.

(8)

In the absence of an outcome lag (∆ = 0), the risk of preemption is nonexistent, implying

that µt = pt for all t. Consequently, investment attractiveness declines over time, because of

players’ increasing pessimism about the technology. This no longer holds when ∆ > 0. With

an outcome lag, investment attractiveness also depends on the intensity of competition faced

by the player. As a result, while µ0 = p0, we have µt ≤ pt for all t > 0, reflecting the added

complexity introduced by potential preemption. Differentiating µt with respect to t and using

(2), we obtain:

µ̇t = −µtλ(kt − ptkt−∆1t≥∆). (9)

It is immediately evident that the growth rate of investment attractiveness decreases

with kt and increases with kt−∆. The first effect is straightforward: When player t invests

more, her opponents face a stronger competition, which can only reduce the attractiveness

of investment. The second effect, however, is less intuitive. To understand why, compare the

situations faced by player t and her “immediate” successor, player t+dt. First, the two players

face different preemption risks, because, unlike player t, player t+ dt competes with player t

but not with player t−∆. As a result, the risk of preemption changes by λ(−kt−∆1t≥∆+kt).

Second, player t + dt is more pessimistic than player t because, unlike player t, she knows

that player t−∆ did not obtain a success. This increases the subjective probability of facing

a bad technology by λ(1− pt)kt−∆1t≥∆. Yet, higher investment by player t−∆ reduces the

risk of preemption and amplifies pessimism, which becomes clear when we rearrange (9) as

follows:
µ̇t

µt
= λ(kt−∆1t≥∆ − kt)︸ ︷︷ ︸

Effect on the risk of

preemption

−λ(1− pt)kt−∆1t≥∆︸ ︷︷ ︸
Effect on optimism

.
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The investment of player t − ∆ thus has opposite effects on the variation of µt: A positive

effect, via the risk of preemption, and a negative effect, via the probability that innovation

is impossible. The overall impact of kt−∆ on µ̇t turns out to be positive. In other words,

past investment enhances the attractiveness of investment over time, primarily because the

reduction in preemption risk outweighs the growing pessimism.

Several observations follow. If kt−∆1t≥∆ = 0 or kt = 1, then µt is necessarily non-

increasing because the negative impact of current investment dominates. If kt = 0, the only

effect at play is the positive impact of kt−∆, making the attractiveness of investment non-

decreasing. When both kt−∆1t≥∆ and kt are positive, the sign of µ̇t will be endogenously

determined in equilibrium.

4.1 Equilibrium characterization

Since player 0 faces no competition and is the most optimistic among all players, she has

the strongest incentives to invest. Consequently, if player 0 chooses not to invest, no resources

will ever be invested in the technology. Given that µ0 = p0, player 0 follows a simple decision

rule: She invests if and only if she is sufficiently optimistic, i.e., p0 > p. This explains why

no investment occurs in equilibrium when p0 ≤ p. Therefore, the remainder of the analysis

focuses on the case where p0 > p.

If p0 > p, player 0 is confident enough in the technology to invest fully (k0 = 1). Her

immediate successors, facing minimal competition and holding the same belief as player 0,

also choose to fully invest. However, as long as players continue investing at this rate, the

attractiveness of investment declines according to (9). Eventually, it reaches the threshold p

at a finite cutoff time τ , at which

µτ = p.

Since kt = 1 for all t < τ , the attractiveness of investment for player τ is given by µτ =

p0e
−λτ/(1 − p0 + p0e

−λ(τ−∆)1τ≥∆). The value of τ depends on whether τ < ∆ or τ ≥ ∆,

which in turn depends on p0. Now, what happens to investment after player τ? For intuition,

let τ + dt denote an “immediate” successor of player τ . If µτ+dt < p, player τ + dt will not

invest, according to (8). However, by (9), this would cause µt to weakly increase at τ , leading

to µτ+dt ≥ p, which contradicts our assumption. Therefore, µτ+dt must be at least p. If µτ+dt
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were strictly greater than p, player τ + dt would invest 1 by (8). However, this would lead

the attractiveness of investment to weakly decrease in τ + dt by (9), contradicting µτ+dt > p.

Thus, the attractiveness of investment must also equal p for the immediate successor of player

τ , as well as for all future players:

µt = p ∀ t ≥ τ.

Since all players t ≥ τ are indifferent about whether to invest, the attractiveness of investment

remains constant beyond τ , meaning µ̇t = 0 for every t > τ . Substituting this condition into

(9) yields the equilibrium action of almost all players after τ :

kt = ptkt−∆1t≥∆ ∀ t ≥ τ.

Notably, in equilibrium, almost every player t arriving after τ best responds to the investment

made by their predecessor t − ∆ by investing a smaller amount: kt ≤ kt−∆. A crucial

consequence is that if player t−∆ did not invest, then player t also refrains from investing.

Since k0 is uniquely determined by p0, and each player t best responds based on the

sequence of actions taken by all players in [0, (t −∆)1t≥∆), the equilibrium strategy profile

k∗ is essentially unique.11 The following proposition formally characterizes this equilibrium.

Proposition 3 (Equilibrium characterization). Let p0 > p. There is an essentially unique

equilibrium k∗, such that:

k∗t =

 1, if t < τ∗(p0),

ptk
∗
t−∆1t≥∆, if t ≥ τ∗(p0),

where τ∗(p0) := min{t | µt = p} =


1
λ ln

(
p0
p

)
, if p0 ∈ (p, peλ∆],

∆+ 1
λ ln

(
Ω(peλ∆)

Ω(p0)

)
, if p0 ≥ peλ∆.

Proof. See Section B.1 in the Appendix.
11By essential uniqueness, we mean that equilibrium actions are unique up to the actions of any null set of

indifferent players, which are arbitrary.
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4.2 Investment breaks

In equilibrium, the investment of almost all agents t who play after τ∗(p0) follows k∗t =

ptk
∗
t−∆1t≥∆. Rearranging this equation, we obtain:

k∗t = (

nt∏
m=0

pt−m∆)1t≥(nt+1)∆, (10)

where nt is the unique integer such that t ∈ [τ∗(p0) + nt∆, τ∗(p0) + (nt + 1)∆).

When τ∗(p0) < ∆, τ∗(p0) + nt∆ < (nt + 1)∆ for each t. Therefore, the Dirac function

in (10) is equal to 0 for all players t ∈ [τ∗(p0) + nt∆, (nt + 1)∆). The intuition behind this

as follows: Players in the interval [τ∗(p0),∆) have not yet received feedback from the first

investments, but are aware that their predecessors invested the maximum possible resource

into the technology. Given the high risk of preemption, they opt not to invest at all. Since,

in equilibrium, choosing not to invest is a best response for player t when player t − ∆ has

also refrained from investing, the start of this initial investment break replicates periodically

at every point in time s ∈ {τ∗(p0) + n∆, n ∈ N}. Conversely, when τ∗(p0) > ∆, the Dirac

function in (10) remains equal to 1 for all t, meaning no investment break occurs. This pattern

is illustrated in Figure 1.

t

k∗
t = 1

Break

τ∗(p0) ∆

Break

τ∗(p0) + ∆ 2∆

p

peλ∆

µt

p0

p < p0 < peλ∆

k∗t = ptk
∗
t−∆1t≥∆

t
∆

p

peλ∆

k∗t = 1 k∗t = ptk
∗
t−∆1t≥∆

τ∗(p0)

p0

µt

peλ∆ ≤ p0

Figure 1: Equilibrium dynamics of µt when p0 > p.

Regardless of the value of ∆, the initial investment period [0, τ∗(p0)), during which players

invest all of their resources, induces subsequent periods of positive investment starting at every

time s ∈ {n∆, n ∈ N}. In the Appendix, we solve equation (10) and prove that, when it is
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positive, the equilibrium investment takes the form k∗t = φ(n, t) where φ(n, t) is defined for

every (n, t) ∈ N× R+ by

Ω(φ(n, t)) :=
Ω(pn)Ω(p0)

Ω(p)
eλ(t−n∆).

The following proposition summarizes these findings, encapsulating the structure of equi-

librium investment dynamics and the periodic nature of investment behavior over time.

Proposition 4 (Investment breaks).

• If p0 ∈ (p, peλ∆], k∗t = 1 if t ∈ [0, τ∗(p0)), and, ∀ n ∈ N∗,

k∗t =

 0 if t ∈ [τ∗(p0) + (n− 1)∆, n∆),

φ(n, t) if t ∈ [n∆, τ∗(p0) + n∆).

• If p0 > peλ∆, k∗t = 1 if t ∈ [0, τ∗(p0)) and, ∀ n ∈ N∗,

k∗t = φ(n, t) if t ∈ [τ∗(p0) + (n− 1)∆, τ∗(p0) + n∆).

Proof. See Section B.2 in the Appendix.

The equilibrium investment dynamics are depicted in Figures 2a and 2b, using parameters

values α = 0.2, λ = 0.7, ∆ = 1.64. These values yield p ≈ 0.29 and peλ∆ ≈ 0.9.

(a) p0 ∈ (p, peλ∆) (b) p0 > peλ∆

Figure 2: Equilibrium investment dynamics.

Several observations follow. First, the likelihood of investment breaks in a risky technol-

ogy increases as the outcome lag grows. This is because the lag creates de facto competition
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between each player t and all players in [t−∆, t). The larger ∆, the more intense the compe-

tition. When ∆ is relatively small compared to players’ optimism (peλ∆ < p0), competition

does not dissuade any player from investing. In this case, all players invest a positive amount,

gradually decreasing their investment over time as they become more pessimistic about the

technology, even though the risk of preemption also declines. In contrast, when ∆ is large

(p0 < peλ∆), some players opt not to invest as the risk of being preempted by past competi-

tors is too high. As the period of non-investment extends, the risk of preemption gradually

declines until investment becomes attractive again. This results in a non-monotonic risk of

preemption: For any player choosing not to invest, there exists a more pessimistic player who

eventually does.

Second, in equilibrium, the proportion of time during which players do not invest is

ρ∗(p0) := max

{
0, 1− τ∗(p0)

∆

}
,

which can be interpreted as the frequency of investment breaks. It follows directly that

the frequency of investment breaks increases with ∆ and α but decreases with p0. The

intuition is as follows. When ∆ increases, the discounted reward in the event of success

mechanically decreases, causing p to increase. As a result, the period during which investment

remains attractive (i.e., above p) shortens, leading to a decrease in τ∗(p0). Consequently, the

ratio τ∗(p0)/∆ declines, making investment breaks more frequent. Similarly, an increase

in investment cost increases p, further reducing τ∗(p0). Finally, the lower p0, the faster

investment attractiveness declines to p, shortening τ∗(p0) and increasing the frequency of

investment breaks. The effect of investment productivity λ on the frequency of investment

breaks is more nuanced, as higher λ has opposite effects on τ∗(p0). On the one hand, a higher

λ increases the risk of preemption, reducing the attractiveness of investment and causing µt

to reach p sooner. On the other hand, a higher λ also improves the probability of success

when the technology is good, which lowers p and delays the point at which µt reaches p.

Differentiating τ∗(p0) with respect to λ, we obtain:

∂τ∗(p0)

∂λ
= − 1

λ2
ln

(
p0
p

)
︸ ︷︷ ︸

Effect via risk of preemption

+
1

λ2︸︷︷︸
Effect via success probability

The negative effect is weighted by the prior belief p0, as preemption occurs only if the tech-

nology is good. In contrast, the positive effect is independent of p0 since it stems from the
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increased probability of success conditional on the technology being good. Consequently, the

positive effect dominates for small values of p0 (i.e., ln(p0/p) < 1), while the negative effect

prevails otherwise.

4.3 Inefficiency

A natural question is whether the equilibrium investment profile is efficient in maximizing

the funding agency’s objective. When there is no outcome lag, the answer is straightforward:

The equilibrium strategy aligns perfectly with the agency’s optimal policy.12 With an outcome

lag, however, the answer is less obvious because the only established properties of the optimal

policy are that it is non-monotonic and that the total investment over time is τ̂(p0). Yet, this

is enough to prove the inefficiency of equilibrium.

To do so, we observe that the funding agency’s payoff can be rewritten as the discounted

sum of individual payoffs. From this observation, it follows almost immediately that the

equilibrium is inefficient for all ∆ > 0. Indeed, in equilibrium, players invest 1 up to τ∗(p0)

and receive payoff 0 thereafter. Consequently, the funding agency’s payoff in equilibrium is

identical to the payoff of a cutoff policy in which kt = 1 if t < τ∗(p0) and kt = 0 otherwise.

However, we formally prove (see Lemma 6 in the Appendix) that a cutoff policy cannot

be optimal for the funding agency. The underlying intuition is that the agency can always

improve upon any cutoff policy by reallocating some of the resources invested at the cutoff

point to a slightly later time, provided that no success has yet been achieved. This proves

what follows:

Proposition 5. Let p0 > p. The equilibrium k∗ is inefficient if and only if ∆ > 0.

Proof. See Section B.3 in the Appendix

What causes the inefficiency? In most experimentation games, players tend to free-ride on

each other’s investments, which leads to an underprovision of investment relative to various

benchmarks, in particular the cooperative solution. However, in our model, each agent invests

only once, which eliminates free-riding in the traditional sense. In fact, the total investment

in equilibrium is identical to that in the funding-agency solution, i.e.,∫ +∞

0
k∗t dt = τ̂(p0).

12When ∆ = 0, we have k∗
t = k̂t = 1t<τ̂(p0).
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This result directly follows from the fact that the public belief in equilibrium converges to the

single-player cutoff p. Indeed, no player is willing to invest when the belief falls below p, as

the expected return on investment is negative even in the absence of competition. Conversely,

if a player were facing no competition with a common belief larger than p, she would have

strict incentives to invest. This implies that investment does not stop at belief levels above p.

Inefficiency thus arises from an inefficient allocation of the total investment τ̂(p0) over

time, which is due to the fact that, at any time, a player faces a different tradeoff than the

funding agency. This appears clearly in the comparison between expression (6) and the best-

response expression (8). Since (1 − wt+∆)µt ≤ µt, player t might chose to invest at a given

level of investment attractiveness even when the funding agency would not. More generally,

the cost of reducing investment is lower for the agency than for an individual player. The

reason is that the agency knows that future opportunities for investment will arise, providing

additional chances to receive a positive payoff beyond time t+∆. This foresight is reflected

in the presence of wt+∆ in condition (6). The greater these future payoff opportunities, the

more the agency can afford to wait for the outcomes of past investments. This difference

explains why investment is allocated differently in equilibrium and in the funding-agency

solution, which becomes particularly striking when the outcome lag is small. Indeed, when

p0 > peλ∆, equilibrium investment is strictly decreasing whereas the agency solution exhibits

non-monotonic dynamics.

5 Extensions

In the previous section, we demonstrated that, for sufficiently large outcome lags, equilib-

rium dynamics become non-monotonic, featuring infinitely many investment breaks. In this

section, we analyze three extensions of our model and prove that non-monotonicities persist

with uncertain outcome lags, convex investment costs, and endogenous timing.

5.1 Uncertain outcome lag

In our baseline model, the outcome lag is deterministic and common knowledge among all

players. This assumption is reasonable in contexts where the investment technology is risky

but the outcome lag is predictable (e.g., in agriculture, farmers know that a seed planted
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in March will either sprout in June if viable or never germinate at all). However, in many

settings, the outcome lag itself is uncertain. To account for this, we extend our model to

consider a scenario where the outcome lag is unknown to players. Specifically, players are

assumed to know that the outcome lag is a random variable ∆ with a probability density

function f over a support [∆,∆]. In the absence of success, players update their beliefs about

both the realization of ∆ and the technology’s type. We show that, as in the deterministic

case, equilibrium exhibits investment breaks if the expected outcome lag is sufficiently large

in a sense that will be made clear later on. However, in contrast to the deterministic setting,

the number of investment breaks remains finite.

Conditional on no success having arrived before t, the expected payoff to player t is

u(kt; k−t) = −αkt + E[e−r∆]λkt
p0e

−λ
∫ t
0 ksds

1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 ksds]

,

where E is the unconditional expectation.13

As in the main model, the linearity of this expression in kt implies that the best response

of player t to k−t is as follows:

kt


= 1 if ξt > p,

∈ [0, 1] if ξt = p,

= 0 if ξt < p,

where the cutoff is now defined by p := α
λE[e−r∆]

and the attractiveness of investment by

ξt :=
p0e

−λ
∫ t
0 ksds

1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 ksds]

.

The mechanics of the equilibrium construction are very similar to the case where ∆ is

known. Because of the risk of preemption, the attractiveness of investment is always lower

than the common belief, meaning no player invests in equilibrium when p0 ≤ p. Therefore,

the remainder of the analysis focuses on the case where p0 > p. In the Appendix, we prove

that ξ̇t < λξt(1− kt), implying that investment becomes less attractive when players are fully

investing. Given this and the initial condition ξ0 = p0, it follows that when p0 > p, there

exists a cutoff τ∗u(p0) > 0 such that ξt > p for all t ∈ [0, τ∗u(p0)), and ξτ∗u(p0) = p. As in the
13See Section C in the Appendix for detailed calculations.
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main model, the attractiveness of investment ξt remains equal to p indefinitely after τ∗u(p0),

and the best response of players arriving after this point is a.e. given by the indifference

condition ξ̇t = 0 for all t ≥ τ∗u(p0).

Proposition 6 (Equilibrium characterization). Let p0 ∈ (p, 1). There is an essentially unique

equilibrium k∗, such that:

k∗t =


1 if t < τ∗u(p0),

p0E[k∗t−∆1t≥∆e−λ
∫ (t−∆)1t≥∆
0 k∗sds]

1−p0+p0E[e
−λ

∫ (t−∆)1t≥∆
0 k∗sds]

if t ≥ τ∗u(p0),
(11)

where τ∗u(p0) := min{t | ξt = p}.

Proof. See Section C in the Appendix.

In the certain setting, when players know that ∆ is large enough, there are infinitely

many equilibrium breaks. A similar pattern emerges in the uncertain case, albeit with some

noticeable differences. Under some conditions on the distribution of ∆, the attractiveness of

investment reaches p before ∆, thus at a moment when players are certain that no outcome

has been realized yet. In this case, players pause investment between τ∗u(p0) and ∆, like they

do in the certain case between τ∗(p0) and ∆, as the high risk of preemption makes investment

too risky. In the certain setting, the initial investment break leads to an infinite sequence of

breaks of the same length. In the uncertain setting, the initial break induces a subsequent

investment break only if its duration exceeds ∆ − ∆. Each successive break that follows is

shorter than the preceding one, triggering another pause only if it still exceeds ∆−∆. As these

breaks progressively shorten, the equilibrium eventually transitions into an infinite period of

positive investment. This key distinction from the certain setting is formally outlined in the

next proposition.

Proposition 7 (Investment breaks). If α
λE[e−r∆]

< p0 < α
λE[e−r∆]

eλ∆, then 0 < τ∗u(p0) < ∆

and

k∗t


= 1 if t < τ∗u(p0),

= 0 if t ∈ [τ∗u(p0) + (n− 1)∆, n∆) for each integer n ≤ n̄u(p0),

> 0 otherwise,

with n̄u(p0) := max{n ∈ N, n < ∆−τ∗u(p0)

∆−∆
}.
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Proof. See Section C in the Appendix.

As there are exactly n̄u(p0) investment breaks, there are at least n̄u(p0) investment waves in

equilibrium.

5.2 Convex investment costs

In the baseline model, we assume linear investment costs. This is a reasonable assumption

for industrial sectors where returns are constant but may be less appropriate for sectors that

are characterized by decreasing returns. In this section, we extend our analysis to a setting

with convex investment costs. Specifically, we assume that the cost of investing kt ∈ R+ is

given by αk2t /2. In contrast to the linear setting, investment in this framework is continuous

and always positive. Despite this difference, investment waves can still emerge in equilibrium,

albeit under conditions that differ qualitatively from those in the linear case.

Conditional on no success having arrived before time t, the expected payoff to player t is:

u(kt; k−t) = −α

2
k2t + e−r∆λktpte

−λ
∫ t
(t−∆)1t≥∆

ksds
. (12)

As the latter expression is concave in kt, the best response of player t to k−t is:

kt =
µt

p
,

where the single player cutoff p and the attractiveness of investment µt are defined as in the

main model. The next result immediately follows.

Proposition 8 (Equilibrium characterization). There is an essentially unique equilibrium

k∗, such that:

k∗t =
p0
p

e−λ
∫ t
0 k∗sds

1− p0 + p0e−λ
∫ (t−∆)1t≥∆
0 k∗sds

∀ t.

The first difference with the linear setting is immediately obvious: Investment remains

continuous and strictly positive at all times. This implies that investment breaks are unique

to the linear case, suggesting that the lumpiness of investment dynamics depends on the

nature of returns. However, investment waves can still emerge in equilibrium under convex

costs, albeit under qualitatively different conditions. In the linear setting, waves occur when

the outcome lag is sufficiently large, as the risk of preemption intensifies just before the first
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outcomes materialize. By contrast, in the convex setting, investment waves arise only when

the outcome lag falls within an intermediate range. Moreover, unlike in the linear case, the

number of investment waves is always finite.

The reason is as follows. The attractiveness of investment is differentiable everywhere but

in ∆. Plugging kt = µt/p into the law of motion of µt, we obtain

µ̇t = −µt
λ

p
(µt − ptµt−∆1t≥∆) for all t 6= ∆. (13)

As in the linear setting, the attractiveness of investment decreases before ∆, leading players to

invest progressively smaller amounts in the technology until time ∆. The subsequent invest-

ment dynamics, however, hinge on the behavior of player ∆. We prove in the Appendix that

if investment continues to decline immediately after ∆, it will do so indefinitely. Conversely,

if investment increases after ∆, then equilibrium dynamics will exhibit a finite number of

periods where investment rises, creating investment waves. In other words, investment waves

occur in equilibrium if and only if µ̇∆ > 0, which occurs precisely when the attractiveness of

investment at time ∆ is sufficiently low, precisely when

µ∆ < p20.

This condition is equivalent to p0 > 2/(1 +
√
1 + 4λ2/(αre)) and ∆ ∈ [∆c,∆c], where ∆c

and ∆c are the solutions of ∆e−r∆ = α(1− p0)/(λp0)
2. This result is formally stated in the

following proposition.

Proposition 9 (Investment waves).

• If p0 > 2
1+

√
1+4λ2/(αre)

and ∆ ∈ [∆c,∆c], there is a sequence of n̄c(p0) intervals of

[∆,+∞) such that k̇∗t > 0 for all t in the union of these intervals, and k̇∗t < 0 otherwise.

• Otherwise, k̇∗t < 0 for all t.

Proof. See Section D in the Appendix.

Why does an excessive lag prevent investment waves? This is because an increased ∆ has

opposite effects on the attractiveness of investment at time ∆. Integrating (13) from 0 to ∆

yields:

µ∆ =
p0p

p+ λp0∆
.
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This equation reveals two opposing forces. First, there is a direct negative effect: Since µt

decreases before ∆, a larger ∆ leads to a smaller µ∆. The same effect operates in the linear

setting. In the convex setting, there is also an indirect positive effect via the increase in p. A

longer lag raises p, which reduces kt for all t < ∆, thereby making investment more attractive

by lowering the risk of preemption. The net effect depends on ∆: µ∆ decreases with ∆ for

∆ ∈ [0, 1/r] but increases for ∆ ∈ [1/r,+∞). Investment waves emerge only if µ∆ remains

sufficiently low, which occurs when ∆ ∈ [∆c,∆c].

5.3 Endogenous investment timing

In the baseline model, investment timing is exogenous. This is a stylized way of rep-

resenting sequential generations of investors, such as cohorts of PhD students who must

choose a research topic. A natural extension is to allow players to decide not only how

much, but also when, to invest. Specifically, each player i ∈ R+ chooses a pure strategy

σi = (ti, ki) ∈ R+ × [0, 1], with the interpretation that player i invests ki at time ti if no

success has occurred before ti. If multiple players invest at time t and no successes occur

between t and t+∆, then the payoff of 1 is equally shared at time t+∆ among all successful

investors. We prove that, as in the setting with exogenous timing, equilibrium investment

breaks emerge if the outcome lag is sufficiently large.

We denote by Kt :=
∫∞
0 ki1σi=(t,ki)di the aggregate investment at time t given the strategy

profile (σi)i. Accordingly, K : R+ → R+ denotes the investment distribution over R+. Note

that Kt > 0 if and only if a positive mass of players invest at time t. We restrict the analysis

to atomic equilibria, defined as equilibrium strategy profiles such that no player invests at

times when the aggregate investment is 0. Formally, σ = (ti, ki)i is atomic if, for all i, ki > 0

only if Kti > 0.

Fix an atomic profile σ and the induced investment distribution K. If a player invests at
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time t, obtains a success and is not preempted by a predecessor, she obtains in expectation:14

F (Kt) :=

 1−e−λKt

λKt
if Kt > 0

1 if Kt = 0.

The expected payoff yielded by strategy (t, k) to a given player is

u(t, k;K) = P (B̄t)e
−rtλe−r∆k

(
−p+ F (Kt)pte

−λ
∫ t
(t−∆)1t≥∆

Ksds
)
,

where P (B̄t) is the probability that no success arrives before time t.15 Like in the exogenous-

timing setting, the linearity in the latter expression implies that the best response investment

level at time t is as follows:

k


= 1 if νt(K) > p,

∈ [0, 1] if νt(K) = p,

= 0 if νt(K) < p,

where the attractiveness of investment is here defined by

νt(K) := F (Kt)pte
−λ

∫ t
(t−∆)1t≥∆

Ksds
.

As the identity of players is irrelevant, any given investment distribution can be induced

by many strategy profiles. We first establish that all atomic equilibria induce the same

investment distribution and yield a payoff of 0 to all players.

Lemma 1 (Rent equalization). If K and K′ are atomic-equilibrium investment distributions,

then K = K′ and

Kt(νt(K)− p) = 0 for all t. (14)

Proof. See Section E in the Appendix.
14If n ≥ 0 other players obtain a success at the same time, the player receives a payoff of 1/(n + 1). Her

expected reward is thus F (Kt) =
∑∞

n=0
1

n+1
P (n other players obtain a success). Neglecting the probability

that the same player obtains more than one success, the number of players obtaining a success at time t follows

the same law as the number of successes occurring at time t, which is a Poisson law of intensity λKt. Therefore,

F (Kt) =

∞∑
n=0

1

n+ 1

(λKt)
n

n!
e−λKt , which simplifies to 1−e−λKt

λKt
.

15Precisely, P (B̄t) = 1− p0 + p0e
−λ

∑(t−∆)1t≥∆
s=0 Ksds.
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This is the first major difference from the exogenous timing setting: The positive rent

earned by players t < τ∗(p0) in the baseline model vanishes when timing is endogenous: All

players receive a payoff of 0 in any atomic equilibrium.

The next proposition characterizes the set of atomic equilibria.

Proposition 10 (Equilibrium characterization). Let K∗ be defined as follows:

• If p0 ≤ p, then K∗
t = 0 for all t.

• If p0 > p, then K∗
t =

 In if t = n∆ and n ≤ n̄e(p0),

0 otherwise,
where (In)n is the decreasing

sequence defined by F (In) = p
(
1 + 1−p0

p0
eλ(

∑n−1
m=0 Ik)1n≥1

)
for each n ∈ N and n̄e(p0) :=

sup{n ∈ N, In > 0}.

K is an atomic-equilibrium investment distribution if and only if K = K∗.

Proof. See Section E in the Appendix.

As in the exogenous timing setting, the attractiveness of investment always remains below

p0. Consequently, no investment occurs in equilibrium when p0 ≤ p. When p0 > p, the

investment dynamics is lumpy, in the sense that players invest at discrete points in time

t ∈ {n∆, n ∈ N} until the public belief reaches p.16 Since players wait for ∆ time units

before reinvesting, the risk of preemption is always 0 in any atomic equilibrium. Therefore,

the atomic equilibrium aggregate investment at each time t satisfies

F (K∗
t )pt = p,

implying that players adjust their investment levels downward over time to account for their

increasing pessimism. Moreover, players have no strictly profitable deviation from a strategy

profile inducing K∗ because investing at time t yields 0 if t = n∆ for any n ≤ n̄e(p0), and

a strictly negative payoff otherwise. This allows us to state that any atomic strategy profile

inducing K∗ is an equilibrium.

Finally, we examine the conditions under which investment breaks occur in equilibrium,

i.e., conditions that ensure n̄e(p0) ≥ 1.
16If n̄e(p0) = 0, there is investment only at time 0, which gives a threshold aspect to the equilibrium

dynamics.
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Proposition 11 (Investment breaks). If p0 > p, there is at least one investment break if and

only if p0 > 1/2 and ∆ > ∆e(p0), where ∆e(p0) is the value of ∆ solving F (I1) = 1.

Proof. See Section E in the Appendix.

The interpretation of this condition is as follows. If p0 > p , there is an initial mass of

investment I0 at time 0. This mass is determined by the equation F (I0) = p/p0, implying

that I0 decreases with the outcome lag. For small values of ∆, the initial investment I0 is so

large that the updated belief at time ∆ falls below the single-player cutoff p. In this case,

investment ceases permanently after time 0. However, if ∆ is sufficiently large, the updated

belief at time ∆ remains above p, leading to at least one additional investment mass at time

t = ∆. This occurs if and only if ∆ > ∆e(p0). Finally, for this condition to hold while

ensuring p0 > p, we must have p0 > 1/2.

6 Concluding remarks

This paper studies a sequential R&D race with outcome lags. We show that such lags

generate a countervailing competition effect that can dominate the learning effect, leading

to non-monotonicities in investment behavior and explaining the often observed lumpiness

in R&D investments. Importantly, these investment non-monotonicities persist even when

players learn not only about the technology, but also about the duration of the outcome lag.

We further show that the phenomenon remains robust with convex costs and when the timing

of investment is endogenous. While our model is necessarily stylized, we conjecture that the

core dynamics we identify are likely to persist under further extensions, which we leave for

future work and briefly outline below.

Alternative reward schemes. The winner-takes-all assumption is well suited for disrup-

tive innovations that replace older technologies (e.g., cell phones supplanting pagers, or the

internet replacing fax machines). Yet a breakthrough often paves the way for a cascade of

related innovations. The 1995 discovery of an exoplanet launched a new field of research

in contemporary astrophysics, stimulating the development of new instruments and observa-

tional facilities. Therefore, although Michel Mayor and Didier Queloz were the sole recipients

of the Nobel Prize for this discovery, many other research teams have benefited, albeit to a

lesser extent, from this breakthrough. To better capture this type of innovation, we could
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assume that each success yields a positive payoff that decreases as the number of successes

increases. In this case, player t’s expected payoff would depend not only on the current belief

(which would reach 1 after the first success) but also on the expected reward in case of success,

which would be influenced by the number of prior successes and the level of investment from

players in the time between t−∆ and t. While this would introduce additional complexity to

the analysis, the possibility of non-monotonic marginal benefits of investment suggests that

investment breaks could still emerge in such a richer setting.

Private signals. Innovating firms often possess private information before embarking on

an R&D process, and research generates insights that remain private for some time. To

extend our model to incorporate private information, we could assume that players receive

conclusive, private signals about the technology. In a good-news setting, where only positive

signals provide information, players would stop full investment earlier than τ∗(p0) if they

receive no signals, as the absence of information would make them more pessimistic about

the technology. After τ∗(p0), in the absence of a positive signal, players would invest only a

fraction of their resources, mirroring the behavior in our original model. Since private signals

accelerate the decline of the updated belief, we conjecture that investment breaks would

occur more frequently than in the model without private signals. The bad-news setting is

more complex because the common belief may not necessarily decrease over time. A player

who receives a negative private signal would not invest. This means that, as time passes

without public success and without investment stopping altogether, players may grow more

or less confident about the technology. The equilibrium evolution of beliefs in this setting is

therefore ambiguous and would require deeper analysis.

Stochastic outcome lag. In many applications, it is more realistic to assume that the out-

come lag is not only uncertain but also idiosyncratic to each experiment (similar experiments

may take different amounts of time to produce results). For example, de Jong et al. (2024)

documented a large variance in the development time for new drugs, from 8 months to 223

months from the first human trial to marketing authorization. The discovery of an exoplanet

also involves a certain degree of chance: The telescope must be directed toward the appro-

priate star at a time when a large, thus more easily detectable, planet is orbiting it. A way

to incorporate this kind of stochasticity in our model would be to assume that an experiment

initiated at time t yields an outcome at time t + ∆t, where (∆t)t is a random process. The
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impact of such stochasticity on players’ tradeoffs is not immediately clear. On the one hand,

a player risks being preempted by a successor who achieves a success first. On the other hand,

a player may also preempt a predecessor whose experiment has not yet produced an outcome.

This dual source of uncertainty could alter the equilibrium dynamics in complex ways. We

conjecture that it may be possible to identify conditions on the random process (∆t)t that

ensure the existence of investment breaks in equilibrium.
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Appendix

We introduce some notation, which we shall use throughout the Appendix. We define:

• xt−∆ := e−λ
∫ (t−∆)1t≥∆
0 ksds and xt := e−λ

∫ t
0 ksds;

• Ω(p) :=
1− p

p
.

We also recall that

• pt =
p0xt−∆

1− p0 + p0xt−∆
, which can be rewritten Ω(pt)xt−∆ = Ω(p0);

• µt = pte
−λ

∫ t
(t−∆)1t≥∆

ksds
=

p0xt
1− p0 + p0xt−∆

.

A Proofs for Section 3: The funding agency problem

A.1 The funding agency objective

The problem of the funding agency is to maximize W (k) = E[(e−rT −
∫ T
0 e−rsαksds)],

where T denotes the random arrival time of the first success. Let us first express W (k).

Lemma 2. Let T denote the random time of arrival of the first success, with T = +∞ if a

success never arrives, and let W (k) = E[(e−rT −
∫ T
0 e−rsαksds)]. It holds that

W (k) =

∫ ∞

0
e−rt(1− p0 + p0e

−λ
∫ (t−∆)1t≥∆
0 ksds)(−αkt + λkt−∆1t≥∆pt)dt.

Proof. The probability of no success arriving before t is 1 if the technology is bad, and

e−λ
∫ (t−∆)≥
0 ksds if the technology is good. Therefore, T is distributed according to density

f(t) = p0λkt−∆1t≥∆xt−∆, which allows us to write:

W (k) =

∫ ∞

0
(e−rt −

∫ t

0
e−rsαksds)p0λkt−∆1t≥∆xt−∆dt−

∫ ∞

0
e−rsαksds(1− p0 + p0x∞),

=

∫ ∞

0
e−rtp0λkt−∆1t≥∆xt−∆dt−

∫ ∞

0
(

∫ t

0
e−rsαksds)p0λkt−∆1t≥∆xt−∆dt

−
∫ ∞

0
e−rsαksds(1− p0 + p0x∞).
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Applying Fubini’s theorem and observing that
∫∞
s λkt−∆1t≥∆xt−∆dt = −x∞ + xs−∆, we

obtain:

W (k) =

∫ ∞

0
e−rtp0λkt−∆1t≥∆xt−∆dt−

∫ ∞

0
e−rtαktp0xt−∆dt− (1− p0)

∫ ∞

0
e−rtαktdt,

=

∫ ∞

0
e−rt(1− p0 + p0xt−∆)(−αkt + λkt−∆1t≥∆

p0xt−∆

1− p0 + p0xt−∆
)dt,

=

∫ ∞

0
e−rt(1− p0 + p0xt−∆)(−αkt + λkt−∆1t≥∆pt)dt.

A.2 Proof of Proposition 1

Applying Lemma 2, we can rewrite the problem of the agency as follows:

W (k) =

∫ ∞

0
e−rt(1− p0 + p0xt−∆)(−αkt)dt+

∫ ∞

∆
e−rt(1− p0 + p0xt−∆)λkt−∆ptdt.

As pt = p0xt−∆/(1− p0 + p0xt−∆),

W (k) =

∫ ∞

0
e−rt(1− p0 + p0xt−∆)(−αkt)dt+

∫ ∞

∆
e−rtλkt−∆p0xt−∆dt.

After a convenient change of variable, we can write:

W (k) =

∫ ∞

0
e−rt(1− p0 + p0xt−∆)(−αkt)dt+

∫ ∞

0
e−r(t+∆)λktp0xtdt,

=

∫ ∞

0
e−rt(1− p0 + p0xt−∆)(

p0xt
1− p0 + p0xt−∆

λkte
−r∆ − αkt)dt.

Finally, using p0xt/(1− p0 + p0xt−∆) = pte
−λ

∫ t
(t−∆)1t≥∆

ksds,

W (k) = max
(kt)t

∫ +∞

0
e−rtkt

(
−α(1− p0 + p0xt−∆) + λe−r∆p0xt

)
dt,

= max
(kt)t

∫ +∞

0
e−rtktλe

−r∆p0(−pΩ(p0) + xt − pxt−∆)dt. (15)

We start by proving the existence of an optimal policy k̂ and by describing the necessary

conditions satisfied by k̂.

Lemma 3 (Existence and necessary conditions). The agency problem admits at least one

solution k̂, which satisfies
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(i)

k̂t


= 1, if νt > 0,

∈ [0, 1], if νt = 0,

= 0, if νt < 0,

with

νt := e−r(t+∆)(−p(1− p0 + p0xt−∆) + p0xt)− xtγt, (16)

where γt is defined by

(ii) γ̇t = e−r(t+∆)p0(αkt+∆ − λkt) + λktγt and limt→+∞ γt = 0.

Proof. By standard results (see, e.g., Seierstad and Sydsaeter (1985)) the problem admits at

least one solution k̂ because a) ẋt and ẋt−∆ are continuous, b) they exhibit linear growth at ∞,

ẋt < C(1+xt) and ẋt−∆ < C(1+xt−∆), c) the set of admissible strategy profiles K is compact,

d) the objective is continuous in xt, xt−∆ and kt, e) and N(t, xt, xt−∆) = {(ẋt, ẋt−∆) : k ∈ K}

is convex for all (t, xt, xt−∆). Applying Pontryagin’s maximum principle, if (k̂, x̂) is a solution

of the agency problem, then there exists a continuous, piecewise continuously differentiable,

function γ : R+ → R with an initial condition γ0 ∈ R such that:

(i) for any admissible control k, H(t, k̂t, x̂t, x̂t−∆, γt) ≥ H(t, kt, x̂t, x̂t−∆, γt) (Pontryagin

maximum principle);

(ii) at any point17 at which γ is differentiable, γ̇t = −Hxt(t, kt, xt, xt−∆, γt) − Hxt(t +

∆, kt+∆, xt+∆, xt, γt+∆) (Euler condition); limt→+∞ γt = 0 (Transversality condition);

where the Hamiltonian of the problem is

H(t, kt, xt, xt−∆, γt) = e−rtkt(−α(1− p0 + p0xt−∆) + λe−r∆p0xt)− λktxtγt

Necessary conditions are rewritten as follows:

(i) k̂t


= 1, if νt > 0,

∈ [0, 1], if νt = 0,

= 0, if νt < 0,

with νt := e−r(t+∆)(−p(1− p0 + p0xt−∆) + p0xt)− xtγt.

17In the sequel, the fact that γ̇t and ν̇t are defined only at points at which γ and ν are differentiable will be

implicit.
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(ii) γ̇t = e−r(t+∆)p0(αkt+∆ − λkt) + λktγt;

Differentiating (16) with respect to t, using expression (ii) and rearranging, we obtain that,

at any point where νt is differentiable, the derivative of ν is

ν̇t = e−r(t+∆)
(
−r(−p(1− p0 + p0xt−∆) + p0xt) + pp0(kt−∆xt−∆ − kt+∆xte

−r∆)
)
. (17)

We now establish some properties of k̂.

Lemma 4. Let k̂ satisfy (i) and (ii) in Lemma 3.

(a) k̂t = 0 for all t ⇔ p0 ≤ p.

(b) There is no τ such that k̂t = 1 for all t ≥ τ .

Proof.

We start with the proof of (a).

• Let us first prove that if k̂t = 0 for all t, then p0 ≤ p. If k̂t = 0 for all t, then γt = 0

for all t by (ii) in Lemma 3. Plugged into (16), we obtain νt = e−r(t+∆)(−p + p0) for all t.

However, we know by Lemma 3 that k̂t = 0 implies νt ≤ 0, which thus further implies p0 ≤ p.

• Let us now prove that p0 ≤ p ⇒ k̂t = 0 for all t. As xt is decreasing, (−pΩ(p0) + xt −

pxt−∆) ≤ −pΩ(p0) + (1− p)xt−∆ = pxt−∆(−Ω(pt) +Ω(p)). As pt is non increasing, if p0 ≤ p,

then Ω(pt) ≥ Ω(p), thus (15) is negative for all k, which implies that the optimal policy is

k̂t = 0 for all t.

We continue with the proof of (b). Suppose that there is τ such that k̂t = 1 for all t ≥ τ .

Then, for all t ≥ τ +∆, xt = xτe
−λ(t−τ) and xt−∆ = xτe

−λ(t−∆−τ). Moreover, for all t ≥ τ ,

γ̇t = λγt−e−r(t+∆)p0(λ−α). Integrating this between τ and +∞ and using the transversality

condition in (ii), we obtain that γt =
λ−α
r+λ p0e

−r(t+∆) for all t ≥ τ . Plugging this into (16) for

any t ≥ τ +∆, we find

λνt = e−rt

(
−α(1− p0) + p0xτe

−λ(t−τ)(−αeλ∆ +
r + α

λ+ r
λe−r∆)

)
,

which is negative for t large enough, and contradicts the proposition k̂t = 1 for all t ≥ τ .
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We now use Lemma 4 to determine
∫ +∞
0 k̂tdt. Let k̂ satisfy (i) and (ii) in Lemma 3.

• If p0 ≤ p, then
∫ +∞
0 k̂tdt = 0 by Lemma 4-(a).

• Consider now the case p0 > p. Let us first prove that xt−∆ ≥ Ω(p0)
Ω(p) for all t. Recall that

the objective of the agency (15) is∫ +∞

0
e−rtktλe

−r∆p0 (−pΩ(p0) + xt − pxt−∆)︸ ︷︷ ︸
:=wt

dt,

and let wt := −pΩ(p0) + xt − pxt−∆. Suppose, ad absurdum, that there is T such that

xT−∆ < Ω(p0)
Ω(p) . As p0 > p, x0 > Ω(p0)

Ω(p) , hence there is τ such that xτ = Ω(p0)
Ω(p) , with xt <

Ω(p0)
Ω(p)

for all t > τ . By definition of τ , for all t ∈ (τ, T − ∆), xt−∆ > Ω(p0)
Ω(p) and xt < Ω(p0)

Ω(p) ,

hence wt < 0 for all t ∈ (τ, T − ∆]. Moreover, for all t > T − ∆, xt < xt−∆ < Ω(p0)
Ω(p) , thus

wt < −pΩ(p0) + (1 − p)xt−∆ < 0 for all t > T −∆. As a consequence, wt < 0 for all t ≥ τ ,

which implies k̂t = 0 for all t ≥ τ . But then, xt = xτ for all t ≥ τ , which contradicts

xT−∆ < Ω(p0)
Ω(p) .

Let us now prove that limt→+∞ xt =
Ω(p0)
Ω(p) . As xt−∆ is weakly decreasing and bounded below

by Ω(p0)
Ω(p) , it converges to some limit x∗ ≥ Ω(p0)

Ω(p) . Let us prove that x∗ = Ω(p0)
Ω(p) . We rewrite wt

as follows:

wt = −pΩ(p0) + (1− p)x∗ + (xt − x∗)− p(xt−∆ − x∗).

By definition of the limit, for every ε > 0, there exists Tε such that |xt − x∗| < ε and

|xt−∆ − x∗| < ε for all t > Tε. Therefore, for every t > Tε,

wt > −pΩ(p0) + (1− p)x∗ − ε(1 + p).

If x∗ > Ω(p0)
Ω(p) , then for any ε < (−pΩ(p0) + (1− p)x∗)/(1 + p), wt > 0 for every t ≥ Tε. That

implies k̂t = 1 for every t ≥ Tε, which is impossible by Lemma 4-(b). This proves that, if∫ +∞
0 k̂tdt > 0, then

∫ +∞
0 k̂tdt =

1
λ ln

(
Ω(p)

Ω(p0)

)
, which concludes the proof of Proposition 1.

A.3 Proof of Proposition 2

We first need to prove that, if p0 > p, it is optimal that players fully invest at the outset

of the game.

Lemma 5. If p0 > p, there is τ̂ > 0 such that k̂t = 1 for all t < τ̂ .
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Proof. We start by proving that, if p0 > p, then ν0 ≥ 0. By expression (17), for all t ≤ ∆,

ν̇t = e−rte−r∆(−r(p0xt − p)− pp0kt+∆xte
−r∆)

Fix p0 > p and suppose to the contrary that ν0 ≤ 0. As 1) νt is continuous, and 2) ν̇0 < 0,

there is ε > 0 such that νt < 0, thus kt = 0, for all t ∈ [0, ε). As a consequence, ν̇t < 0 on

[0, ε) and νε < 0. Iterating the argument, it follows that νt < 0 for all t ≤ ∆. As xt−∆ = 1 for

all t ∈ [∆, 2∆], the argument can be extended to all t > ∆. This implies k̂t = 0 ∀ t, which,

by Lemma 4-(a), implies p0 ≤ p, which is a contradiction. Therefore, if p0 > p, then ν0 > 0.

As νt is continuous, there is τ̂ > 0 such that νt > 0 on [0, τ̂). This proves the result.

Now we prove that investment cannot stop in finite time.

Lemma 6. If
∫ +∞
0 k̂tdt > 0, there is no τ such that k̂t = 0 for all t ≥ τ .

Proof. Suppose that
∫ +∞
0 k̂tdt > 0 and that there is a cutoff τ > 0 such that kt = 0 for all

t ≥ τ . Let τ̃ := mint{t s.t kt′ = 0 ∀ t′ ≥ t}, so that ντ̃ = 0 and νt ≤ 0 for all t ≥ τ̃ . By

(ii) in Lemma 3, γt = 0 for all t ≥ τ̃ . Plugging into (16), we obtain that, for all t ≥ τ̃ ,

νt = e−r(t+∆)(−p(1− p0 + p0xt−∆) + p0xt). Plugging kt+∆ = 0 into (17), we thus obtain

ν̇t = −rνt + λe−r(t+∆)pp0kt−∆xt−∆ ∀ t ≥ τ̃ .

As νt ≤ 0 for all t ≥ τ̃ and there is at least one t̄ in (τ̃ −∆, τ̃) such that kt̄ > 0, the latter

expression implies that ν̇t̄+∆ > 0, which contradicts kt̄+∆ = 0.

Lemma 4-(b) and Lemma 5 together prove that k̂ cannot be weakly increasing for all t.

Let us now prove it cannot be weakly decreasing for all t. Suppose ad absurdum that k̂ is

decreasing for all t ∈ R+. Applying Lemma 5, we know that there is a cutoff τ̂ > 0 such that

k̂t = 1 for all t ∈ [0, τ̂). As phases where k̂t = 1 cannot be infinite by Lemma 4-(b), this first

phase must be followed by a phase where k̂t < 1. If there is t̃ > τ̂ such that k̂t̃ = 0, because

k̂ is decreasing it must be the case that k̂t = 0 for all t ≥ t̃, which is impossible by Lemma 6.

Hence, there is no t̃ such that k̂t̃ = 0, which implies that k̂t ∈ (0, 1) for all t > τ̂ , with k̂t ≥ k̂t′

for all t < t′. Applying the necessary conditions given in Lemma 3, this implies that νt = 0
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and ν̇t = 0 for all t ≥ τ̂ which, using (17), yields

k̂t−∆1t≥∆xt−∆ − k̂t+∆e
−r∆xt =

r

λp0p
(−p(1− p0 + p0xt−∆) + p0xt) ∀ t ≥ τ̂ (18)

• If τ̂ < ∆, then (18) is rewritten as follows for all t ∈ [τ̂ ,∆):

k̂t+∆ =
r

αp0

(
p

xt
− p0

)
.

As k̂t+∆ ≥ 0, it holds that p

xt
− p0 ≥ 0. As 1/xt ≤ eλ∆, this further implies p0 ≤ peλ∆.

Moreover, xt = e−λ
∫ t
0 ksds, hence ∂(1/xt)/∂t = λkt/xt > 0. Therefore, k̂ is strictly increasing

on [τ̂ +∆, 2∆], which contradicts the assumption that k̂ is decreasing.

• If τ̂ ≥ ∆, then for t = τ̂ , (18) is rewritten

e−λ(τ̂−∆) − k̂t+∆e
−r∆−λτ̂ =

r

λp0p
(−p(1− p0 + p0e

−λ(τ̂−∆)) + p0e
−λτ̂ ),

which yields

k̂τ̂+∆ = e(λ+r)∆ − r

α
(1− peλ∆ − pΩ(p0)e

λτ̂ ).

Let us establish that k̂τ̂+∆ > 1. As τ̂ > ∆,

k̂τ̂+∆ > e(λ+r)∆

(
1 +

r

λp0

)
− r

α
.

Let us now prove that the function r 7→ h(r) := e(λ+r)∆
(
1 + r

λp0

)
− r

α − 1 is strictly positive

for all r. Differentiating h twice with respect to r, we obtain:

h′(r) = e(λ+r)∆

(
∆(1 +

r

λp0
) +

1

λp0

)
− 1

α

h′′(r) = ∆2e(λ+r)∆ +
∆

αp0
peλ∆(2 + ∆r)

As h′′(r) > 0 for all r, h′ is increasing in r, with h′(0) = eλ∆(∆+ 1
λp0

)− 1
α and limr→+∞ h′(r) =

+∞. There are two cases.

• If h′(0) > 0, then h′(r) > 0 for all r > 0. As h(0) = eλ∆ − 1 > 0, this implies h(r) > 0 for

all r > 0.

• If h′(0) ≤ 0, then there is r̃ ∈ (0,+∞) such that h′(r̃) = 0, such that h(r) decreases on [0, r̃]

and increases on [r̃,+∞). Let us prove that h(r̃) > 0. By definition, h′(r̃) = 0, thus

e(λ+r̃)∆ =
1/α

∆(1 + r̃
λp0

) + 1
λp0

(19)
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Therefore,

h(r̃) = 1
∆(1+ r̃

λp0
)+ 1

λp0

(
1
α(1 +

r
λp0

)− (1 + r̃
α)(∆(1 + r̃

λp0
) + 1

λp0
)
)

= 1
αλp0

1
∆(1+ r̃

λp0
)+ 1

λp0

(λp0 − α− (α+ r̃)∆(λp0 + r̃))

Let g(∆) := λp0 − α− (α+ r̃)∆(λp0 + r̃). Differentiating g with respect to ∆, we obtain:

g′(∆) = − ∂r̃

∂∆
∆(λp0 + α+ 2r̃)− (α+ r̃)(λp0 + r̃)

Differentiating (19) with respect to ∆, we obtain:

∂r̃

∂∆
∆ =

λ(1− p0)

λp0∆+ 2 + r̃∆
− (λ+ r̃)

Plugging the expression of ∂r̃
∂∆ into the latter expression, we obtain that g′(∆) > 0. As

g(0) > 0, this implies g(∆) > 0 for all ∆, thus h(r̃) > 0.

As a conclusion, k̂τ̂+∆ > 1, which brings the desired contradiction and proves that k̂

cannot be decreasing.

B Proofs for Section 4: The strategic problem

B.1 Proof of Proposition 3

Recall that the best response of player t to k−t is

kt


= 1 if µt > p,

∈ [0, 1] if µt = p,

= 0 if µt < p,

with µt = pte
−λ

∫ t
(t−∆)1t≥∆

ksds. Differentiating µt with respect to t, we obtain

µ̇t = e
−λ

∫ t
(t−∆)1t≥∆

ksds
(ṗt − ptλ(kt − kt−∆1t≥∆)) ,

which reduces to

µ̇t = −λµt(kt − ptkt−∆1t≥∆) (20)

after using (2): ṗt = −pt(1− pt)λkt−∆1t≥∆.

We start by proving that there is no investment in equilibrium when p0 ≤ p.
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Lemma 7. If p0 ≤ p, then, in the unique equilibrium, k∗t = 0 for all t > 0.

Proof. For every t and every k−t it holds that µt ≤ pt ≤ p0 = µ0. If p0 < p, then µt < p for

all t, which implies that kt = 0 is dominant for all t ≥ 0 by (8). If p0 = p and k0 > 0, then

µ̇0 < 0, thus µt < p for all t > 0, and kt = 0 is dominant for all t > 0.

Next, we prove that when p0 > p, in equilibrium there is a cutoff τ∗(p0) such that k∗t = 1 for

all t < τ∗(p0).

Lemma 8. Let p0 > p. In any equilibrium k∗, k∗t = 1 for all t < τ∗(p0) where τ∗(p0) is

defined by τ∗(p0) := inf{t | µt = p}, i.e.,

τ∗(p0) :=


− 1

λ ln
(

p

p0

)
if p0 ∈ [p, peλ∆],

∆+ 1
λ ln

(
Ω(peλ∆)

Ω(p0)

)
if p0 ≥ peλ∆.

Proof. Suppose that p0 > p. Because µ0 = p0, it holds that µ0 > p. Therefore, in equilibrium

there exists τ > 0 such that µs > p for every s ≤ τ , hence such that k∗s = 1 for every s ≤ τ

by the best-response condition (8). Plugging this into the expression of µt and ṗt, we have

µτ = pτe
−λ(τ−(τ−∆)1τ≥∆) and ṗτ = −λpτ (1− pτ )1τ≥∆.

Straightforwardly, the function h(τ) := pτe
−λ(τ−(τ−∆)1τ≥∆) is continuous and strictly de-

creasing in τ . Moreover, h takes the value p0 > p in τ = 0 and the value pe−λ∆ < p in

τ = ∆+ 1
λ ln

(
Ω(p)

Ω(p0)

)
. This implies that there exists a unique value of τ , denoted by τ∗(p0),

such that h(τ) = p, whose expression depends on whether it is larger or smaller than ∆.

• If h(∆) > p, then τ∗(p0) > ∆, hence

h(τ∗(p0)) = p ⇔ pτ∗(p0)e
−λ∆ = p

⇔ pτ∗(p0) = peλ∆

Integrating the law of motion of pt between ∆ and τ∗(p0) > ∆, we obtain

τ∗(p0) = ∆+
1

λ
ln

(
Ω(peλ∆)

Ω(p0)

)
.

The condition τ∗(p0) > ∆ is thus equivalent to p0 > peλ∆.

• If h(∆) < p, then τ∗(p0) < ∆, hence
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h(τ∗(p0)) = p ⇔ p0e
−λτ∗(p0) = p

⇔ eλ(∆−τ∗(p0)) =
peλ∆

p0

which is rewritten

τ∗(p0) = − 1

λ
ln

(
p

p0

)
.

The condition τ∗(p0) < ∆ is thus equivalent to p0 < peλ∆.

Next, we characterize k∗t for all t ≥ τ∗(p0).

Lemma 9. In any equilibrium, if µt = p, then µs = p for every s ≥ t.

Proof. Fix some player t and suppose that µt = p. As µt is continuous, if there is t′ > t such

that µt′ > p, then there is an open interval S ⊂ [t, t′] such that µ̇s > 0 and µs > p for every

s ∈ S. This implies that ks = 1 for every s ∈ S by (8), which contradicts µ̇s > 0 by (20).

Also, if there is t′ > t such that µt′ < p, then there is an open interval S ⊂ [t, t′] such that

µ̇s < 0 and µs < p for every s ∈ S. This implies that ks = 0 for every s ∈ S by (8), thus

contradicts µ̇s < 0 by (20).

Applying Lemma 8, k∗t = 1 for all t < τ∗(p0) and µτ∗(p0) = p. Applying Lemma 9, µt = p

for all t ≥ τ∗(p0). As µt is constant on [τ∗(p0),+∞) in any equilibrium, its derivative is

µ̇t = 0 for every t ≥ τ(p0). By (20), this implies that

k∗t = ptk
∗
t−∆1t≥∆ for almost all t ≥ τ∗(p0). (21)

We have proved that any equilibrium k∗ satisfies k∗t = 1 if t < τ∗(p0) and k∗t = ptk
∗
t−∆1t≥∆

for almost all t ≥ τ∗(p0). As pt is determined by (k∗s)s<t, the equilibrium action at t depends

on all equilibrium actions before t. Moreover, in any equilibrium, k∗0 = 1 if p0 > p. There-

fore, there exists a unique function k∗ satisfying the equilibrium conditions, thus there is an

essentially unique equilibrium. This concludes the proof of Proposition 3.

B.2 Proof of Proposition 4

The aim of this (tedious) proof is to determine the analytical expression of k∗t . For

ease of notation, τ will stand for τ∗(p0) throughout the proof. We also denote by pnt and
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knt the public belief and player t’s action at time t ∈ [τ + (n − 1)∆, τ + n∆], and write

p̃n := pnτ+(n−1)∆ = pn−1
τ+(n−1)∆. By definition of τ ,

p̃1 = pτ =

 p0, if τ ≤ ∆,

peλ∆ if τ ≥ ∆.

Note that in the case where p0 ∈ (p, peλ∆), knt = 0 and pnt = p̃n for all t ∈ [τ +(n− 1)∆, n∆].

The differences between the cases p0 ∈ (p, peλ∆) and p0 ≥ p0e
λ∆ are illustrated in Figures 3

and 4.

t
0 ∆ τ

p̃1
(p1t , k

1
t )

τ +∆

(p2t , k
2
t )

p̃2

τ + 2∆

(p3t , k
3
t )

p̃3

τ + 3∆

. . .

τ + (n− 2)∆

p̃n−1

(pn−1
t , kn−1

t )

τ + (n− 1)∆

(pnt , k
n
t )

p̃n

τ + n∆

Figure 3: p0 ≥ peλ∆.

t
0

(p0, 1)

τ

(p0, 0)

∆

p̃1
(p1t , k

1
t )

τ +∆

p̃2
(p̃2, 0)

2∆

p̃2
(p2t , k

2
t )

τ + 2∆

. . .

n∆

p̃n
(pnt , k

n
t )

τ + n∆

p̃n+1

(p̃n+1, 0)

(n+ 1)∆

p̃n+1

(pn+1
t , kn+1

t )

τ + (n+ 1)∆

Figure 4: p0 ∈ (p, peλ∆).

Step 1 We shall first establish by induction that, for every n ≥ 2, and for all t ≥ ∆,

Ω(pnt )

Ω(p̃n)
=

1

1− (1− e−λ(t−(n−1)∆−max{τ,∆}))
∏n−1

k=1 p̃
k

(22)

Let us first express pnt as a function of pn−1
t−∆. The law of motion of the common belief

is ṗt = −λpt(1 − pt)kt−∆1t≥∆ for all t. In particular, ṗt−∆ = −λpt−∆(1 − pt−∆)kt−2∆1t≥2∆
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(a) holds for every t. Moreover, applying the indifference condition (21) to t′ = t − ∆, in

equilibrium, it holds that kt−∆1t≥∆ = pt−∆kt−2∆1t≥2∆ (b). Plugging (b) into (a), we obtain:

kt−∆1t≥∆ = − ṗt−∆

λ(1− pt−∆)
1t≥∆.

Now, fix some n ≥ 2. For every t ∈ [τ + (n− 1)∆, τ + n∆), ṗnt = −λpnt (1− pnt )k
n−1
t−∆1t≥∆ by

definition and we have just shown that kn−1
t−∆1t≥∆ = − ṗn−1

t−∆

λ(1−pn−1
t−∆)

1t≥∆. Combining these two

expressions and rearranging, we obtain:

ṗnt
pnt (1− pnt )

=
ṗn−1
t−∆

1− pn−1
t−∆

. (23)

Integrating (23) between τ + (n− 1)∆ and some t ∈ [τ + (n− 1)∆, τ + n∆), we obtain:

ln

(
Ω(pnt )

Ω(pnτ+(n−1)∆)

)
= ln

(
1− pn−1

t−∆

1− pn−1
τ+(n−2)∆

)
,

which, by definition of p̃n, can be rewritten:

Ω(pnt )

Ω(p̃n)
=

1− pn−1
t−∆

1− p̃n−1
. (24)

Let us now prove that (22) is true for n = 2. As kt = 1 for every t ≤ τ , Ω(p1t ) =

Ω(p̃1)e
λ(t−max{τ,∆}) for all t ≥ ∆, i.e.,

1− p1t =
Ω(p̃1)

Ω(p̃1) + e−λ(t−max{τ,∆}) =
1− p̃1

1− p̃1 + p̃1e−λ(t−max{τ,∆}) .

Plugging n = 2 into (24) yields Ω(p2t )
Ω(p̃2)

=
1−p1t−∆

1−p̃1
. Therefore,

Ω(p2t )

Ω(p̃2)
=

1

1− (1− e−λ(t−∆−max{τ,∆}))p̃1
,

which implies that (22) is true for n = 2.

Let us now suppose that (22) is true for some given n, and let us prove that it is true for

n+ 1. Again, by (24) it holds that Ω(pn+1
t )

Ω(p̃n+1)
=

1− pnt−∆

1− p̃n
. Let us use (22) to derive 1− pnt−∆.

If (22) holds for n, then

1− pnt =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−(n−1)∆−max{τ,∆}))
∏n−1

k=1 p̃k
,

which implies that

1− pnt−∆ =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−n∆−max{τ,∆}))
∏n−1

k=1 p̃k
.
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Using (24) and the latter expression, we can write that

Ω(pn+1
t )

Ω(p̃n+1)
=

Ω(p̃n)/(1− p̃n)

Ω(p̃n) + 1− (1− e−λ(t−n∆−max{τ,∆}))
∏n−1

k=1 p̃k
,

=
1

1− (1− e−λ(t−n∆−max{τ,∆}))
∏n

k=1 p̃k
,

hence (22) is true for n+ 1.

Step 2 Next we shall establish by induction that, for every n ≥ 1,

Ω(p̃n) =
(1− p̃1)(1− p)

pn−1(p̃1 − p) + p(1− p̃1)
. (25)

This is straightforward for n = 1. Let us prove that (25) holds for n = 2. By definition of

p̃2, Ω(p̃2) = Ω(p2τ+∆) = Ω(p1τ+∆). Moreover, since kt = 1 for every t ≤ τ , the value of p1τ+∆

depends on whether τ is larger or smaller than ∆, and is given by

Ω(p1τ+∆) =

 Ω(p0)e
λτ if τ < ∆,

Ω(peλ∆)eλ∆ if τ > ∆.

Recall that τ∗(p0) = 1
λ ln

(
p0
p

)
when τ∗(p0) < ∆. As a consequence, the two latter expressions

reduce to

Ω(p1τ+∆) =


1−p0
p if τ < ∆,

1−peλ∆

p if τ > ∆,

which, by definition of p̃1, can be rewritten as follows:

Ω(p1τ+∆) =
1− p̃1

p
.

It is straightforward to verify that plugging n = 2 into (25) also yields Ω(p1τ+∆) =
1−p̃1
p , which

proves that (25) is true for n = 2.

Let us now fix some n ≥ 3 and suppose that (25) is true for every k ≤ n. Our aim is to

establish that (25) is true for n + 1. As p̃n+1 = pn+1
τ+n∆ = pnτ+n∆ by definition, the value of

Ω(p̃n+1) is obtained by plugging t = τ + n∆ into (22), which yields

Ω(p̃n+1)

Ω(p̃n)
=

1

1− (1− e−λ(τ+∆−max{τ,∆}))
n−1∏
k=1

p̃k

Now, observe that

1− e−λ(τ+∆−max{τ,∆}) =

 1− e−λτ if τ < ∆,

1− e−λ∆ if τ ≥ ∆.
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If τ < ∆, 1 − e−λτ = 1 − p

p0
=

p̃1−p

p̃1
since p̃1 = p0 when τ < ∆. Furthermore, if τ > ∆,

1− e−λ∆ = 1− p

peλ∆
=

p̃1−p

p̃1
since p̃1 = peλ∆ when τ > ∆. Therefore,

1− e−λ(τ+∆−max{τ,∆}) =
p̃1 − p

p̃1
,

which implies that

Ω(p̃n+1) =
p̃1Ω(p̃n)

p̃1 − (p̃1 − p)
n−1∏
k=1

p̃k

. (26)

Let us now compute
∏n−1

k=1 p̃k under the induction hypothesis. If (25) is true for every k ≤ n,

then for any k ≤ n,

p̃k =
pk−1(p̃1 − p) + p(1− p̃1)

pk−1(p̃1 − p) + 1− p̃1
.

We thus observe that p̃k = p× A(k − 1)

A(k)
, with A(k) := pk−1(p̃1 − p) + 1− p̃1. Therefore, the

product
∏n−1

k=1 p̃k can be simplified as follows:
n−1∏
k=1

p̃k =

n−1∏
k=1

p× A(k − 1)

A(k)
= pn−1 A(0)

A(n− 1)

= pn−1
p−1(p̃1 − p) + 1− p̃1

pn−2(p̃1 − p) + 1− p̃1

After a last simplification, we obtain
n−1∏
k=1

p̃k = pn−2
p̃1(1− p)

pn−2(p̃1 − p) + 1− p̃1
. (27)

Plugging this into (26) and simplifying by p̃1, we obtain:

Ω(p̃n+1) = Ω(p̃n)
pn−2(p̃1 − p) + 1− p̃1

pn−2(p̃1 − p) + 1− p̃1 − (p̃1 − p)pn−2(1− p)

As Ω(p̃n) =
(1− p̃1)(1− p)

p

1

pn−2(p̃1 − p) + 1− p̃1
under the induction hypothesis, we further

obtain:

Ω(p̃n+1) =
(1− p̃1)(1− p)

pn(p̃1 − p) + p(1− p̃1)
,

which proves that (25) is true for n+ 1.

Step 3 We can now derive the expression of knt . As kt = 1 if t ≤ τ and kt = ptkt−∆1t≥∆ if

t ≥ τ , it is straightforward to prove by induction that, for all t ≥ ∆,

knt =
n−1∏
i=0

pn−i
t−i∆.

46



Plugging (27) and (25) into (22), we obtain:

Ω(pnt ) =
Ω(p)Ω(p̃1)

Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−max{τ,∆}) ,

which can be rearranged as follows:

pnt = p
Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−max{τ,∆})

Ω(p̃1)(1− pn) + pn−1(1− p)e−λ(t−(n−1)∆−max{τ,∆}) .

Because t− i∆− (n− i− 1)∆−max{τ,∆} = t− (n− 1)∆−max{τ,∆}, for every i ≤ n− 2,

pn−i
t−i∆ = p

B(i+ 1; t)

B(i; t)
,

with B(i; t) := Ω(p̃1)(1− pn−i) + pn−1−i(1− p)e−λ(t−(n−1)∆−max{τ,∆}). Therefore,

knt =

n−1∏
i=0

(
p
B(i+ 1; t)

B(i; t)

)
= pn

B(n; t)

B(0; t)
,

which simplifies to:

knt =
Ω(p)

Ω(p) + Ω(p̃1)Ω(pn)eλ(t−(n−1)∆−max{τ,∆})

Finally, one observes that

Ω(p̃1)e
λ(∆−max{τ,∆}) =

 Ω(p0), if τ < ∆,

Ω(peλ∆)eλ(∆−τ), if τ ≥ ∆.

As, by definition of τ∗(p0), Ω(peλ∆) = Ω(p0)e
λ(τ−∆) when τ > ∆, it turns out that Ω(p̃1)eλ(∆−max{τ,∆}) =

Ω(p0), hence that

knt =
Ω(p)

Ω(p) + Ω(p0)Ω(pn)eλ(t−n∆)
.

The observation that Ω(knt ) =
1−knt
knt

=
Ω(p0)Ω(pn)eλ(t−n∆)

Ω(p) concludes the proof of Proposition 4.

B.3 Proof of Proposition 5

Using expression (15), the funding agency’s payoff can be written as follows:

W (k) =

∫ ∞

0
e−rtkt(1− p0 + p0xt−∆)(

p0xt
1− p0 + p0xt−∆

λe−r∆ − α)dt,

which, using the player’s payoff expression (7), gives

W (k) =

∫ ∞

0
e−rt(1− p0 + p0xt−∆)u(kt; k−t)dt.
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We know that, in equilibrium, k∗t = 1 if t < τ∗(p0) and u(k∗t , k
∗
−t) = 0 for all t ≥ τ∗(p0).

Therefore,

W (k∗) =

∫ τ∗(p0)

0
e−rt(1− p0 + p0e

−λ(t−∆)1t≥∆)λe−r∆(µt − p)dt = W (k̃),

where k̃ is the cutoff strategy defined by k̃t = 1t<τ∗(p0). By Lemma 6, W (k̃) < W (k̂).

Therefore, W (k∗) < W (k̂), which proves the desired result.

C Proofs for Section 5.1: Uncertain outcome lag

C.1 Payoff expression

Recall that B̄t stands for the event “no breakthrough has occurred by time t” and let Yt

denote the event “player t obtains payoff 1”. As player t does not know the outcome lag, her

expected payoff at time t is:

u(kt, k−t) = −αkt + E[e−r∆1Yt | B̄t].

We can write

E[e−r∆1Yt | B̄t] =

∫
e−rδP (Yt | ∆ = δ, B̄t)f(δ | B̄t)dδ,

where

P (Yt | ∆ = δ, B̄t) = λkt
p0e

−λ
∫ (t−δ)1t≥δ
0 ksds

1− p0 + p0e−λ
∫ (t−δ)1t≥δ
0 ksds

e
−λ

∫ t
(t−δ)1t≥δ

ksds
,

and

f(δ | B̄t) = (1− p0 + p0e
−λ

∫ (t−δ)1t≥δ
0 ksds)

f(δ)

P (B̄t)
.

Therefore,

E[e−r∆1Yt | B̄t] =
λkte

−λ
∫ t
0 ksds

P (B̄t)
E[e−r∆].

As the probability that no breakthrough occurs before t is:

P (B̄t) = 1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 ksds],

we obtain:

u(kt; k−t) = −αkt + λkt
p0e

−λ
∫ t
0 ksds

1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 ksds]

E[e−r∆].
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C.2 Proof of Proposition 6

Recall that the attractiveness of investment is

ξt =
p0e

−λ
∫ t
0 ksds

1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 ksds]

.

Differentiating ξt with respect to t and simplifying, we obtain:

ξ̇t = −λξt

kt −
p0E[kt−∆1t≥∆e

−λ
∫ (t−∆)1t≥∆
0 ksds]

1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 ksds]

 .

We start by proving the following Lemma.

Lemma 10. For every t,

(i) ξt ≤ p0 for all t.

(ii) If kt = 1 and p0 < 1, then ξ̇t < 0.

(iii) If kt = 0, then ξ̇t ≥ 0.

Proof. ∀ δ ∈ [∆,∆], e−λ
∫ (t−δ)1t≥δ
0 ksds ≥ e−λ

∫ t
0 ksds, thus E[e−λ

∫ (t−∆)1t≥∆
0 ksds] ≥ e−λ

∫ t
0 ksds.

As, in addition, 1 ≥ e−λ
∫ t
0 ksds, it holds that

1− p0 + p0E[e
−λ

∫ (t−∆)1t≥∆
0 ksds] ≥ e−λ

∫ t
0 ksds,

which proves (i).

Let zt :=
p0E[kt−∆1t≥∆e−λ

∫ (t−∆)1t≥∆
0 ksds]

1−p0+p0E[e
−λ

∫ (t−∆)1t≥∆
0 ksds]

. As kt−δ1t≥δ ≤ 1 for every δ ∈ [∆,∆] and p0 < 1, it

holds that 0 ≤ zt < 1. If kt = 1, then ξ̇t = −λξt(1− zt), which is thus strictly negative. This

proves (ii). If kt = 0, then ξ̇t = λξtzt, which is non negative. This proves (iii).

We now turn to the proof of Proposition 6. If p0 ≤ p, ξt ≤ p for every t by Lemma 10.

As a consequence, k∗t = 0 for every t. Suppose now p0 > p. As ξ0 = p0, in that case ξ0 > p,

hence k∗t = 1 in a right neighborhood of 0. By Lemma 10, ξt strictly decreases. If k∗t = 1

for all t, then limt→+∞ ξt = 0 < p, thus there is a cutoff τ∗u(p0) > 0 such that ξt > p for all

t ∈ [0, τ∗u(p0)], and ξτ∗u(p0) = p, i.e.,

p0e
λτ∗u(p0)

1− p0 + p0E[e−λ
∫ (τ∗u(p0)−∆)1τ∗≥∆
0 ksds]

= p. (28)
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Let us now prove that, in equilibrium, ξt = p for every t ≥ τ∗u(p0). If ξτ∗u(p0)+dt > p, then

kτ∗u(p0)+dt = 1. By Lemma 10, this implies that ξ̇t strictly decreases in τ∗u(p0) + dt, which

contradicts ξτ∗u(p0)+dt > p. Therefore, ξτ∗u(p0)+dt ≤ p. If ξτ∗u(p0)+dt < p, then kτ∗u(p0)+dt = 0.

By Lemma 10, this implies that ξ̇t increases in τ∗u(p0), which contradicts ξτ∗u(p0)+dt < p. This

proves that ξτ∗u(p0)+dt = p, and that ξt = p for every t ≥ τ∗u(p0). As a consequence, the

best response of each player after τ∗u(p0) is given by the indifference condition ξ̇t = 0 for all

t ≥ τ∗u(p0), which yields,

k∗t =
p0E[k

∗
t−∆1t≥∆e

−λ
∫ (t−∆)1t≥∆k∗sds
0 ]

1− p0 + p0E[e−λ
∫ (t−∆)1t≥∆
0 k∗sds]

.

C.3 Proof of Proposition 7

Applying Proposition 6, we can state that

k∗t = 0 ⇔ t ≥ τ∗u(p0) and kt−δ1t≥δ = 0 ∀ δ ∈ [∆,∆). (29)

A direct consequence of (29) is that if k∗t = 0 for all t ∈ [x, y), with k∗y > 0 and ∆−∆ < y−x,

then k∗t = 0 for all t ∈ [x+∆, y +∆) and k∗y+∆ > 0.

Suppose that τ∗u(p0) ≤ ∆, and fix some t ∈ [τ∗u(p0),∆). As t < ∆, 1t≥δ = 0 for all

δ ∈ [∆,∆], thus E[k∗t−∆1t≥∆e
−λ

∫ (t−∆)1t≥∆k∗sds
0 ] = 0. Therefore,

k∗t = 0 for all t ∈ [τ∗u(p0),∆) and k∗∆ > 0.

Now, for each n ∈ N, we let In := [τ∗u(p0)+(n−1)∆, n∆). We have proved that, if τ∗u(p0) < ∆,

then k∗t = 0 everywhere on I1 and k∗∆ > 0. Applying (29), if 2∆ > τ∗u(p0) + ∆, then k∗t = 0

everywhere on I2. Going on iteratively, for each n ∈ N, if k∗t = 0 everywhere on In, with

k∗n∆ > 0 and (n+ 1)∆ > τ∗u(p0) + n∆, then k∗t = 0 everywhere on In+1 and k∗(n+1)∆ > 0.

Let n̄u(p0) ∈ N such that n̄u(p0) <
∆−τ∗u(p0)

∆−∆
and n̄u(p0)+1 ≥ ∆−τ∗u(p0)

∆−∆
. Note that, because

τ∗u(p0) < ∆, n̄u(p0) exists and n̄u(p0) ≥ 1. By definition of n̄u(p0), k∗t = 0 for all t ∈ In̄u(p0),

and k∗t > 0 for all t ≥ n̄u(p0)∆.
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D Proofs for Section 5.2: Convex investment costs

D.1 Proof of Proposition 9

We start by proving that, in equilibrium, both the investment level and the common belief

converge to 0.

Lemma 11. Let k be an equilibrium. If p0 < 1, limt→∞ pt = limt→∞ k∗t = 0.

Proof. If p0 < 1, the function t 7→ pt is weakly decreasing and bounded below by 0, thus

it converges towards some limit pl ≥ 0, with pt ≥ pl for all t. As k∗t = µt/p and µt is

bounded above by p0, k∗t ≤ p0/p for all t. Moreover, µt = pte
−λ

∫ t
(t−∆)1t≥∆

ksds. Therefore,

µt is bounded below by ple
−λ∆

p0
p , which further implies that k∗t ≥ pl

p e
−λ∆

p0
p for all t. Since

pt = (p0e
−λ

∫ (t−∆)1t≥∆
0 ksds)/(1− p0 + p0e

−λ
∫ (t−∆)1t≥∆
0 ksds), the latter inequality implies that

pt ≤
p0e

−λ(t−∆)1t≥∆
pl

p
e
−λ∆

p0
p

1− p0 + p0e
−λ(t−∆)1t≥∆

pl

p
e
−λ∆

p0
p

.

If pl > 0, the right-hand term in the latter inequality converges to 0 as t goes to +∞, thus

pl = 0, which is a contradiction. This proves that pl = 0.

Finally, by definition, 0 < µt = k∗t p ≤ pt for all t. The fact that pl = 0 directly implies

limt→∞ µt = limt→∞ kt = 0.

The rest of the proof is organized as follows. We first give a sufficient condition for µt to

be decreasing for all t ≥ T for some T (Lemma 12). Then we prove that there can be only a

finite number of intervals where µt is increasing, if any (Lemma 13).

The function t 7→ µt is differentiable everywhere except at ∆, and for all t 6= ∆, it holds

that µ̇t = −λµt(kt − kt−∆1t≥∆). As kt = µt/p, the law of motion of µt can be rewritten as

follows:

µ̇t = −µt
λ

p
(µt − ptµt−∆1t≥∆)︸ ︷︷ ︸

:=st

for all t 6= ∆. (30)

Let st := µt − ptµt−∆1t≥∆, so that µ̇t = −µtstλ/p.

Lemma 12. Fix n ∈ N. If µ̇t ≤ 0 for all t ∈ (n∆, (n+ 1)∆)) and s(n+1)∆ ≥ 0, then µ̇t ≤ 0

for all t > (n+ 1)∆.
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Proof. We know that, for all t ∈ ((n+ 1)∆, (n+ 2)∆), st is differentiable and

ṡt = µ̇t − ṗtµt−∆ − ptµ̇t−∆.

Suppose that there exists at least one open interval [t, t] ⊆ [(n + 1)∆, (n + 2)∆] such that

µ̇t > 0 for all t ∈ (t, t). Let [τ , τ ] be the “smallest” of these intervals, in the sense that µ̇t ≤ 0

almost everywhere on ((n+ 1)∆, τ ]. As s(n+1)∆ ≥ 0 by assumption, this implies that st ≥ 0

almost everywhere on [(n+ 1)∆, τ ].

As µ̇t ≤ 0 for all t ∈ (n∆, (n + 1)∆)), µ̇t−∆ ≤ 0 for all t ∈ (τ , τ). Moreover, ṗt ≤ 0 by

definition of pt. Therefore, for all t ∈ (τ , τ), ṡt > 0. As sτ ≥ 0, it follows that st > 0 on [τ , τ ],

which implies µ̇t > 0 on [τ , τ ] by (30), thus a contradiction.

As a consequence, µ̇t ≤ 0 almost everywhere on ((n + 1)∆, (n + 2)∆]. As µ̇t = −λµtst,

this implies that s(n+2)∆ ≥ 0. Iterating the argument used in the previous lines, it follows

that µ̇(t) ≤ 0 for almost all t > (n+ 1)∆.

Lemma 13. If µ̇t > 0 for all t ∈ (τ , τ), then τ < +∞ and there is T such that µ̇t < 0 for all

t ≥ T . Moreover, there is T such that µ̇t < 0 for all t ≥ T .

Proof. Let us start with the first part of the Lemma. Suppose that µ̇t > 0 for all t ≥ τ . As

st = µt − µt−∆pt > µt − µt−∆, µ̇t > 0 for all t ≥ τ would imply that st > 0 for all t > τ +∆,

thus µ̇t < 0, for all t > τ +∆, hence a contradiction. Therefore, τ < +∞.

Let us now turn to the second part of the Lemma. Observe that, for all t ≥ ∆,

µt

µt−∆
= xt

1−p0+p0xt−∆

1−p0+p0xt−2∆

xt−∆
,

=
1− p0 + p0xt−2∆

1− p0 + p0xt−∆
e
−λ

∫ t
(t−∆)1t≥∆

ksds
,

≥ e
−λ∆

p0
p ,

since xt is decreasing and ks ≤ p0
p . Rewriting (30) for t ≥ ∆, it holds that:

µ̇t = −λ

p
µtµt−∆(

µt

µt−∆
− pt) ≤ −λ

p
µtµt−∆(e

−λ∆
p0
p − pt).

As limt→∞ pt = 0, there exists T < +∞ such that pt ≤ e
−λ∆

p0
p for all t ≥ T , which implies

µ̇t < 0 for all t ≥ T .
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We can now turn to the proof of the result. For all t < ∆, the expression of µt can be

obtained by solving the differential equation µ̇t = −µ2
tλ/p with initial condition µ0 = p0,

which yields:

µt =
p0p

p+ λp0t
for all t < ∆.

Clearly, µt is decreasing on [0,∆] and, as it is continuous everywhere, µ∆ =
p0p

p+λp0∆
, thus

s∆ =
p0p

p+λp0∆
− p20.

• If s∆ ≥ 0, then µ̇t ≤ 0 for all t > ∆ by Lemma 12.

• If s∆ < 0, because st is continuous, in a right neighborhood of ∆, µ̇t is well-defined and

positive. Thus there exists τ > ∆ such that µ̇t > 0 on (∆, τ ]. By Lemma 13, τ < +∞ and

there is T > τ such that µ̇t < 0 for all t ≥ T . Hence there is a positive and finite number of

intervals where µt is strictly increasing.

We finish by establishing the conditions under which s∆ < 0. As s∆ =
p0p

p+λp0∆
− p20,

s∆ < 0 ⇔ ∆e−r∆ > α(1−p0)
(λp0)2

. The function g(∆) := ∆e−r∆ is increasing on [0, 1/r] and

decreasing on [1/r,+∞), with g(0) = lim∆→+∞ g(∆) = 0 and g(1/r) = 1/(re).

Therefore, if 1
re < α(1−p0)

(λp0)2
, then s∆ > 0 for all ∆. Otherwise, s∆ < 0 if and only if

∆ ∈ [∆c,∆c], where ∆c <
1
re < ∆c are the two solutions of equation

α(1− p0)

(λp0)2
= ∆e−r∆.

E Proofs for Section 5.3: Endogenous investment timing

E.1 Proof of Lemma 1

Let K be the distribution of aggregate investment induced by some atomic equilibrium.

Given that 1) players can decide when to invest and 2) individual deviations have no impact

on K, all investing players must have the same payoff in equilibrium. Thus there exists a

constant C ≥ 0 such that, for all t, if Kt > 0, then P (B̄t)e
−rt(−p + νt(K)) = C. Indeed,

if there were t 6= t′ such that P (B̄t)e
−rt(−p + νt(K)) > P (B̄t′)e

−rt′(−p + νt′(K)), then each

player supposed to invest at time t′ would be better off investing at time t. Moreover, if C > 0,

then all players must invest in equilibrium, because non-investing players have payoff 0. But

if all players invest in equilibrium, the indifference condition P (B̄t)e
−rt(−p + νt(K)) = C

53



must hold in the limit, which implies C = 0. This proves that K satisfies

Kt(νt(K)− p) = 0 ∀ t. (31)

This proves that any equilibrium distribution must satisfy (31).

Let us now prove by induction that there is a unique equilibrium distribution K∗. To do

so, consider two sequences K′ and K′′ satisfying (31). We start by proving that K ′
0 = K ′′

0 .

• If K ′
0 = 0, then F (K ′

0) = 1, thus no player invests at 0 only if p0 ≤ p. Yet, in that case,

F (K ′′
0 )p0 ≤ p, thus K ′′

0 = 0. By symmetry, we can state that K ′
0 = 0 ⇔ K ′′

0 = 0.

• If K ′
0 > 0, then K ′′

0 > 0, thus, by (31), F (K ′
0) = F (K ′′

0 ), which implies K ′
0 = K ′′

0

because F is strictly decreasing.

Now, fix some t > 0, suppose that K ′
s = K ′′

s for all s < t and let us prove that K ′
t = K ′′

t .

Straightforwardly, under this assumption it holds that

νt(K
′)

F (K ′
t)

=
νt(K

′′)

F (K ′′
t )

(32)

• If K ′
t = 0, then F (K ′

t) = 1 by definition, thus νt(K
′) ≤ p since, otherwise, K ′

t would

be positive. Using (32), this further implies that νt(K
′′) ≤ F (K ′′

t )p. If K ′′
t > 0, then

F (K ′′
t ) < 1, and νt(K

′′) < p, which contradicts K ′′
t > 0. Therefore, K ′′

t = K ′
t = 0. As

the same reasoning applies if K ′′
t = 0, this proves that K ′

t = 0 ⇔ K ′′
t = 0.

• If K ′
t > 0, then K ′′

t > 0 and νt(K
′) = νt(K

′′) = p by (31). Plugging this into (32), we

obtain that F (K ′
t) = F (K ′′

t ), which implies K ′
t = K ′′

t as F is strictly decreasing.

E.2 Proof of Proposition 10

Consider the sequence I : N → R defined by:

F (In) = p

(
1 +

1− p0
p0

eλ(
∑n−1

m=0 Ik)1n≥1

)
∀ n ∈ N.

If In ≥ 0, then F (In+1) ≥ p
(
1 + 1−p0

p0
eλ(

∑n−1
m=0 Ik)1n≥1

)
= F (In), which implies that In+1 ≤ In

as F is strictly decreasing. As, in addition, I0 ≥ 0 when p0 ≥ p, we can state that there is

N ∈ N ∪ {+∞}, such that

In ≥ 0 and In+1 ≤ In for all n < N.
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Let n̄e(p0) := sup{n ∈ N, In > 0} and let K be defined by

Kt =

 In if t = n∆ and n ≤ n̄e(p0),

0 otherwise.

As we have proven that there is a unique distribution K∗ that satisfies the equilibrium con-

dition (14), it suffices to prove that K satisfies (14) to establish the “only if” part of the

characterization. Let us compute νt(K) for all t. It is straightforward to prove by induction

that, for all n ∈ N,

νt(K) =



F (In)
p0e

−λ(
∑n−1

m=0 Im)1n≥1

1− p0 + p0e
−λ(

∑n−1
m=0 Im)1n≥1

if t = n∆ and n ≤ n̄e(p0),

p0e
−λ(

∑n−1
m=0 Im)1n≥1

1− p0 + p0e
−λ(

∑n−1
m=0 Im)1n≥1

e−λIn if t ∈ (n∆, (n+ 1)∆) and n ≤ n̄e(p0),

p0e
−λ

∑n̄e(p0)
m=0 Im

1− p0 + p0e−λ
∑n̄e(p0)

m=0 Im
if t ≥ n̄e(p0) + 1.

Using the definition of (In)n, we can rewrite νt(K) as follows:

νt(K) =


p if t = n∆ and n ≤ n̄e(p0),

p

F (In)
e−λIn if t ∈ (n∆, (n+ 1)∆) and n ≤ n̄e(p0),
p

F (In̄e(p0)+1)
if t ≥ n̄e(p0) + 1.

Claim 1. F (I) > e−λI for all I > 0.

Proof. By definition of F , F (I) ≥ e−λI ⇔ eI − I − 1 ≥ 0. Yet the function I 7→ eI − I − 1

is strictly increasing on R+ and equals 0 when I = 0, which proves that it is always positive,

and strictly positive if I > 0.

Applying Claim 1, for all n ∈ N and all t ∈ (n∆, (n + 1)∆), νt(K) < p thus Kt = 0.

Moreover, as In̄e(p0)+1 < 0, p

F (In̄e(p0)+1)
< p, hence for all t ≥ n̄e(p0) + 1, νt(K) < p thus

Kt = 0. Finally, νt(K) = p for all t = n∆, with n ≤ n̄e(p0). Therefore, K satisfies (31), which

proves the “only if” part of the result.

We now turn to the “if” part. Consider an atomic strategy profile inducing K∗. Let us

prove that this profile is an equilibrium. Fix any player i. If player invests i at time t = n∆,

with n ≤ n̄e(p0), then she obtains 0, by definition of K∗. If she invests at any other t, i.e.,

between atoms or after n̄e(p0), she obtains a strictly negative payoff, also by definition of K∗

and n̄e(p0).
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E.3 Proof of Proposition 11

By definition of n̄e, n̄e ≥ 1 ⇔ I1 > 0 ⇔ F (I1) < 1. By definition of F , F (I1) < 1 if and

only if

H(p0) := p0 − p− p(1− p)g(p0) > 0, (33)

with g(p0) determined by 1−e−g(p0)

g(p0)
=

p

p0
. As g(p) = 0 and 1 − pg(1) = e−g(1), we have

H(p) = 0 and H(1) = (1− p)e−g(1) > 0. We start by proving the following Lemma:

Lemma 14. Let g(p0) be defined by F (g(p0)λ ) =
p

p0
, i.e.,

1− e−g(p0)

g(p0)
=

p

p0
. (34)

It holds that

(i) g′(p0) > 0 for all p0 ∈ [p, 1);

(ii) limp0→p g
′(p0) =

2
p ;

(iii) g′′(p0) < 0 for all p0 ∈ [p, 1).

(iv) ∂g(p0)
∂p = − g(p0)

p−p0+pg(p0)

Proof. (i) Differentiating (34) with respect to p0 and rearranging, we obtain

g′(p0)(p− p0e
−g(p0)) = 1− e−g(p0) (35)

Let us prove that p−p0e
−g(p0) > 0. We rewrite p−p0e

−g(p0) = p0(
p

p0
−e−g(p0)) = p0(F (g(p0))−

e−g(p0)). Now, consider h(x) := F (x) − e−x. Clearly, h(0) = 0. Moreover, differentiating h

with respect to x, we obtain h′(x) > 0 for all x > 0. This implies h(x) > 0 for all x > 0, thus

g′(p0) > 0.

(ii) As g′(p0) = 1−e−g(p0)

p−p0e−g(p0)
and g(p) = 0, we use L’Hôpital’s rule to find that limp0→p g

′(p0) =

2/p.

(iii) Differentiating (35) with respect to p0, we find that

g′′(p0)(p− p0e
−g(p0)) = g′(p0)e

−g(p0)(2− p0g
′(p0))

As (p− p0e
−g(p0)) and g′(p0) are both positive, the sign of g′′(p0) is the sign of (2− p0g

′(p0)).

Let us prove that g′(p0) > 2/p0 almost everywhere on (p, 1]. Suppose in contrast that there
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are p < x < y < 1 such that g′(p0) < 2/p0 for all p0 ∈ [x, y]. As it implies that g′′(p0) > 0 on

[x, y], g′(x) < 2/x < 2/p = g′(p). As g′ is continuous, this further implies that g′ is decreasing

on some interval [x′, y′] ⊂ [p, x] with g′(p0) < 2/p0 on this interval, which is impossible.

(iv) Differentiating (34) with respect to p, we obtain

−∂g(p0)

∂p
p0e

−g(p0) = −g(p0)− p
∂g(p0)

∂p

Rearranging and using (34), we obtain the desired expression.

Differentiating H(p0) twice with respect to p0, we obtain H ′(p0) = 1− p(1− p)g′(p0) and

H ′′(p0) = −p(1 − p)g′′(p0). By Lemma 14, H is convex on [p, 1], which implies that H ′(p0)

increases on [p, 1]. Invoking again Lemma 14, limp0→pH
′(p0) = 2p− 1. Therefore,

• if p ≥ 1/2, then H(p0) > 0 for all p0 ∈ [p, 1];

• if p < 1/2, then there is x ∈ (p, 1) such that H ′(p0) < 0 ⇔ p0 ∈ [p, x), which further

implies that there exists a unique p̃(p) ∈ (x, 1), defined by H(p̃(p)) = 0 such that

H(p0) > 0 if and only if p0 > p̃(p).

As a consequence, H(p0) > 0 if and only if (a) or (b) holds, with

(a) p ≥ 1/2;

(b) p < 1/2 and p0 ≥ p̃(p);

The next Lemma states that p̃(p) decreases with p on [0, 1/2].

Lemma 15. ∂p̃(p)

∂p < 0 for all p ∈ [0, 1/2).

Proof. For the sake of clarity, let h(p0, p) := H(p0) = p0 − p− p(1− p)g(p0). By definition of

p̃(p), h(p̃(p), p) = 0, hence

p̃(p)− p− p(1− p)g(p̃(p)) = 0. (36)

Differentiating h(p̃(p), p)) with respect to p, we find that

h1(p̃(p), p)p̃
′(p) + h2(p̃(p), p) = 0.
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By definition, h1(p̃(p), p)) = H ′(p̃(p)), which is positive as p̃(p) > x. Let us prove that

h2(p̃(p), p) is also positive. Differentiating h(p0, p) with respect to p, we obtain:

h2(p0, p) = −1 + (2p− 1)g(p0)− p(1− p)
∂g(p0)

∂p
.

By (iv) in Lemma 14, ∂g(p0)
∂p = − g(p0)

p−p0+pg(p0)
. Therefore,

∂g(p̃(p))

∂p
= −

g(p̃(p))

p− p̃(p) + pg(p̃(p))
.

Plugging (36) into the latter expression, we obtain:

∂g(p̃(p))

∂p
= − 1

p2
.

Therefore,

h2(p̃(p), p) = −1 + (2p− 1)g(p̃(p)) +
1− p

p
=

1− 2p

p
(1− pg(p̃(p))),

which is positive because p < 1/2 and 1− pg(p0) > p0 − pg(p0) = p0e
−g(p0) > 0.

We can now conclude the proof. First, as p̃(p) is decreasing, p0 ≥ p̃(p) ⇔ p > p̃−1(p0) ⇔

∆ > ∆e(p0) where ∆e(p0) solves p0 = p̃(p), i.e., F (I1) = 1. As, in addition, p̃(1/2) = 1/2, we

know that p̃(p) > 1/2 thus p0 > p̃(p) ⇒ p0 > 1/2. Therefore,

(b) ⇒ p0 > 1/2 and ∆ > ∆e(p0).

Second, p ≥ 1/2 implies that ∆ > ∆e :=
1
r ln

(
λ
2α

)
. It also implies that p0 > 1/2 since p0 > p.

Moreover, it is straightforward to show that, if p0 > 1/2, then ∆e > ∆e(p0). Therefore,

(a) ⇒ p0 > 1/2 and ∆ > ∆e(p0).

This proves that H(p0) > 0 only if p0 > 1/2 and ∆ > ∆e(p0). The “if” implication is

straightforward.
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