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Abstract

We study a game of strategic experimentation in which information arrives

through fully revealing, publicly observable, breakdowns. We find that players

experiment significantly less, and payoffs are lower, when actions are hidden.

We also study a game of strategic experimentation in which information arrives

through fully revealing, publicly observable, breakthroughs. In this case, both

experimentation and payoffs are higher with hidden actions. We view this as

evidence that behavior is systematically affected by the informational environ-

ment and consistent with strategic free-riding.
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1 Introduction

Games of pure informational externalities have received a lot of attention in the lit-

erature (see, e.g., Bolton and Harris 1999, Keller, Rady, and Cripps 2005 or Hörner,

Klein, and Rady 2022).1 In these games, the information produced by a given player

benefits other players as well—information production is a public good, and players

tend to produce inefficiently little of it in equilibrium. Following Keller, Rady, and

Cripps (2005), most papers in this literature have focused on so-called good-news

environments, where discontinuous events bring good news; the absence of news

consequently leads to a continuous deterioration in beliefs. In many real-world ap-

plications, however, discontinuous news events are in the form of bad news; think

of severe side effects stemming from a medical drug, or the catastrophic malfunc-

tioning of some technology, for instance. Theoretically, it is well understood (see,

e.g., Keller and Rady 2015, or Wagner and Klein 2022) that the mechanisms under-

lying the bad-news strategic-learning models differ sharply from those under good

news. While Hoelzemann and Klein (2021) has experimentally investigated strategic

experimentation under good news, andHoelzemann,Manso, Nagaraj, and Tranchero

(2024) investigates the role of players’ information in a strategic setting, we are, to the

best of our knowledge, the first to experimentally investigate a bad-news strategic-

experimentation setting.

The scant attention given to bad-news settings is surprising because of their eco-

nomic importance: Bad-news learning processes naturally occur upon the introduc-

tion of a new technology that holds out hopes of cost savings but entails risks. Such

risky technologies include new drugs and medical devices, and innovative processes

such as hydraulic fracturing for oil production. Some technologies that are socially

undesirable, perhaps because they impose negative externalities on other sectors, also

fit in this broad class. Consider financial fraud or tax evasion when agents have in-

complete information about the effectiveness of the detection technology. In all these
1Wolitzky (2018) analyzes the trade-off between a safe and a risky option in the context of a con-

tinuum of short-lived players making decisions sequentially.
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cases, there also exist significant barriers to the flow of information, making unob-

servable actions a good starting point for the analysis. For example, the decision to

evade taxes is private, but getting caught is typically a public event.

In this paper, we are investigating in particular the role of the observability of ac-

tions in a bad-news game of strategic experimentation with bandits. These are games

of purely informational externalities, where players have an incentive to free-ride

on the information produced by the other players. In a continuous-time, infinite-

horizon, setting, it is theoretically known that, in a conclusive bad-news model, pri-

vate information tends to be bad for welfare (Bonatti and Hörner 2017). This is be-

cause, in the absence of conclusive news, observing a player’s shirking in information

production makes the other player(s) more pessimistic than they would be on the

equilibrium path if the conclusive bad news fails to materialize. Therefore, with con-

clusive bad news, players will be less prone to slack off in information production if

their actions are observable, because, after observing a deviation, the other player(s)

will be warier about the risky option than they would be absent a deviation. Because

the only externality in the game is the positive informational externality between play-

ers, leading to a tendency toward under-production of information in equilibrium,

we should expect that making deviations unobservable ought to dampen welfare in a

conclusive bad-news environment.

The main goal of this investigation is to test whether this qualitative prediction of

the theory is borne out by actual behavior in a controlled laboratory environment. In

order to do so, we have endeavored to come up with the simplest possible environ-

ment in which theory would predict the qualitative effect just described to arise. For

the effect to arise, we need at least three periods. This is because, in the last period, a

player does not care what their opponent will do, as they have no future use for the

information learned in this period. So, only in the first period do players want to

alter their opponent’s future behavior for strategic considerations. We therefore con-

struct a three-period, two-player, game, calibrating the parameters in such a way that

the game features the strategic effects we are interested in. We have constructed our
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game in a particularly starkway so that it has the feature that the efficient solution is an

equilibrium if and only if actions are observable. The efficient solution has both play-

ers using the risky option in all periods (absent a breakdown); the unique equilibrium

with unobservable actions has both players never using the risky option, while either

always or never playing risky are the two equilibria with observable actions. Empiri-

cally, both experimentation and payoffs are higher with observable actions. Further,

participants use the risky option more frequently over time, reflecting growing opti-

mism.

To understand whether the differences in behavior between the informational set-

tings depend on whether they are predicted by (perfect Bayesian) equilibrium in the

particular game, or whether they are a more general feature of behavior, we study

a three-period game in the good-news setting. To do so, we chose simple numer-

ical values for the parameters that additionally have the property that there is no

difference in equilibrium predictions depending on whether actions are observable

or not. Information now arrives through fully revealing, publicly observable, break-

throughs instead of breakdowns. In contrast to our bad-news game, it is known that,

in a continuous-time, infinite-horizon, setting, private information is good for wel-

fare in a conclusive good-news game (Bonatti and Hörner 2011). This is because, in

the absence of conclusive news, observing a player’s shirking in information produc-

tionmakes the other player(s) more optimistic than they should be on the equilibrium

path. Therefore, the other player(s) will tend to pick up the slack in information pro-

duction after an observable deviation to shirking. Therefore, with conclusive good

news in continuous time, players will be more prone to slacking off in information

production if their actions are observable. Because the only externality in the game

is the positive informational externality between players, leading to a tendency to-

ward under-production of information in equilibrium, making deviations unobserv-

able improves welfare in a continuous-time, infinite-horizon, conclusive good-news

environment. Thus, in contrast to naïve intuition, less observability, and hence less

information, can be welfare-improving in a game of purely informational externali-
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ties. We thus want to test if, in our good-news game, participants will free-ride more,

and therefore achieve lower average payoffs, when actions are observable, even though

this is not an equilibrium feature of our three-period game. Empirically, participants

experiment indeed significantly less when actions are observable. Moreover, their

payoffs are lower. Over time, participants decrease their use of the risky option, re-

flecting growing pessimism.

In summary, the paper makes two main contributions. First, we present evidence

that behavior is systematically affected by the informational environment. In the bad-

news environment, we find that both experimentation and payoffs are higher with

observable actions. By contrast, in the good-news environment, participants experi-

ment significantly less, and their payoffs are lower, when actions are observable, even

though, in our game, there is no difference in equilibrium predictions depending on

whether actions are observable or not.

Second, behavior is consistent with strategic free-riding, as information is a public

good and participants produce inefficiently little of it. In the bad-news environment,

participants experiment, on average, too little even when the efficient solution is an

equilibrium. For the good-news environment, we design a three-period game such

that, under either informational assumption, equilibrium always features underpro-

duction of information. Participants’ behavior is indeed characterized by too little

experimentation, especially when actions are observable.

The rest of the paper is organized as follows. Section 2 explains our environment

and design. Section 3 sets out our experimental implementation and presents our

main findings. Section 4 introduces the good-news game and presents its analysis.

This is followed by an econometric robustness test, which is presented in Section 5.

Section 6 explains our theoretical frameworks in detail. Section 7 offers a discussion

on economic significance, reviews some additional related literature and concludes

with some thoughts on free-riding on information.
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2 The Bad-News Environment

In this section, we provide a brief description of our theoretical framework to build

intuition and to guide our experimental design, identification strategy, and econo-

metric analysis. A complete formal analysis of the game will be provided in Section

6.

2.1 The Design

There are two players and the game is played over three periods 𝑡 = 1, 2, 3. If the safe

arm is used, the payoff will be 0 for certain in that period. Using the risky arm en-

tails a benefit of 𝑠 = 2, 857 (Experimental $). The risky arm is either good or bad, its

type remaining constant over the three periods of the game. If it is good, its use never

imposes a cost. If it is bad, it leads to a breakdown, imposing a cost of 20,000, with a

probability of 𝜆 = 1/4 in any period it is used. Conditionally on the risky arm’s type, the

draws are i.i.d. between players and across periods; there are thus no payoff externali-

ties between the players, as only the player whose arm incurs the breakdown bears its

cost. Players do not initially know if the risky arm is good or bad; they know that Na-

ture (or the computer) makes the risky arm bad with a probability of 𝑝0 = 0.676392.
After a breakdown is observed, the risky arm is known to be bad with probability 1. In

the absence of a breakdown and 𝑛 successful tries of the risky arm, Bayes’ rule implies

that an observer knowing this information should hold the belief 𝑝𝑛 = 𝑝0(1−𝜆)𝑛
𝑝0(1−𝜆)𝑛+1−𝑝0

that the risky arm is bad; i.e., observing that the risky arm has been used without a

breakdown makes players increasingly optimistic about the quality of the risky arm.

Thus, the updated posterior belief either jumps to 1 in case of a breakdown, or de-

clines with the number of unsuccessful tries 𝑛. Arm types are i.i.d. across games. One

player’s risky arm is good if and only if the other one’s is as well. In the treatment with

observable actions, a player observes all of the other player’s previous actions as well

as the outcomes of these actions. In the treatment with unobservable actions, a player

observes only if the other player has suffered a breakdown of 20,000 from the risky
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arm or not.

Our (admittedly somewhat buckled) numerical values allow us to make stark the-

oretical predictions. One computes that the solution maximizing the sum of the play-

ers’ payoffs has both players playing risky in the first period, and continuing to play

risky in the subsequent periods unless and until a breakdown occurs.2 Clearly, in

equilibrium, once a player knows the risky arm to be bad because they have observed

a breakdown, they will use the safe arm in all subsequent periods, as is efficient. Fur-

thermore, one verifies by backward induction that, with unobservable actions, the

only equilibrium is for both players always to play safe.3 With observable actions,

however, while always playing safe remains an equilibrium, the efficient solution is

an equilibrium as well. This latter equilibrium is sustained by the threat of the other

player switching to always playing safe if the other player plays safe in the first period,

and thus requires that actions be observable.4

Implications for Behavior Consequently, we hypothesize that action observability

matters. Our behavioral hypotheses are as follows:

• We observe efficient behavior more often with observable than with unobserv-

able actions.

• Participants use the risky arm more when actions are observable.

• Participants’ payoffs are higher when actions are observable.

• Updating of beliefs: Conditionally on no breakdown having occurred, partici-

pants use the risky arm more in later periods.
2The efficient solution is the utilitarian optimum that corresponds to the maximization of the sum

of players’ expected payoffs. It is the solution rational, risk-neutral, players would want to commit to
at the outset of the game if they could write a binding contract on it.

3See Section 6 for details.
4We have chosen the game parameters so that this “grim” play is indeed an equilibrium in this

(off-path) subgame. Please see Section 6 for details.
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3 The Experiment

3.1 Organization

We conducted all experiments in the months of July to November 2023 at the Univer-

sity of Vienna. Participants were recruited from the Vienna Center for Experimental

Economics (VCEE) subject pool using ORSEE (Greiner 2015). No one participated

in more than one session. During the experiments, participants could contact an ex-

perimenter anytime for assistance. After reading the instructions, participants had to

correctly answer several comprehension questions before starting themain part of the

experiment. The experiment was programmed in oTree (Chen, Schonger, and Wick-

ens 2016). We recruited 104 participants and all payments were made in cash. The

average participant earned approximately €10.57 from one randomly selected game

and all payments were in Euros. The instructions and experimental interface are re-

produced in the online appendix.

3.2 Implementation

In order to increase the computational efficiency of the implementation and to in-

crease control, we had simulated all the relevant parameters ahead of time. As all

our stochastic processes are Bernoulli processes, simulating their realizations ahead

of time is equivalent to simulating them as the game progresses. These included sep-

arate processes for the quality of the risky arm and the timing of breakdowns on the

risky arm in case it was bad.5 We generated 25 different sets of realizations of the ran-

dom parameters controlling the quality of the risky arm and the arrivals of the bad

risky arm. These corresponded to 25 different games that each of our participants

played. To make our findings more easily comparable, we have kept the same realiza-

tions for both observable and hidden actions. Participants were randomly assigned

to groups of two players and randomly rematched within a matching group of six to

eight participants after each game. Each participant was randomly assigned either to
5Details are available upon request.
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the treatment with observable or hidden actions, and played the 25 games in random

order. To ensure a balanced data-collection process, we replicated any order of the 25

games that was used for amatching group in the treatment with observable actions for

a matching group in the treatment with unobservable actions. Participants could see

their fellow group members’ action choices and payoffs, depending on the randomly

assigned treatment, on their computer screens. Figure 1 shows how information was

displayed, observable actions being illustrated at the top and unobservable actions—

“the ugly”—being highlighted at the bottom.

Figure 1: Bad News – Experimental Implementation

3.3 Experimental Results

This section is dedicated to examining the implications for behavior as detailed in

Section 2.1. For each of the 25 games, we implemented two treatments, actions being

either observable or unobservable, within two-player groups, comprising 52 groups

in total. These groups were randomly re-matched within a matching group after each

game; all relevant parameters were simulated in advance.

We divide our analysis into four distinct sections. Initially, we provide summary

statistics, highlighting both the average intensity of experimentation and the overall

group payoffs. Following this, our primary analysis examines the aggregate experi-

mental outcomes, with an initial focus on the distribution patterns of experimenta-
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tion intensities and group payoffs. Subsequently, we assess efficiency by comparing

observed behavior to the theoretical efficient solution. In addition, we study how be-

havior relates to our theoretical predictions, in particular the consistency with equi-

librium. The final part of our analysis examines the evolution of behavior over time,

specifically how participants adjust their action choices in games where no break-

downs occur. To enhance the robustness of our findings, we include a robustness test,

utilizing ordinary least squares (OLS) regressions with random effects and clustering

of standard errors at the matching-group level. These results are reported in Section

5. Our results show that the number and order of games previously played by partici-

pants does not significantly influence their behavior, thereby affirming the robustness

of our findings across the study.

Experimentation and Payoffs

As outlined in Section 2.1, we anticipate that average experimentation intensities and

group payoffs would be higher in the treatment where monitoring by others is pos-

sible. Recall that experimentation intensity for each player is measured up until the

moment a first breakdown occurs to any player in the group. Table I presents the

observed mean experimentation intensities and the average total payoffs, calculated

using group averages across all games for both treatments.

Table I: Bad News – OLS Estimations

Experimentation Intensity Payoffs

Intercept 0.602∗∗∗ 1085.255∗∗∗

(0.044) (298.817)
Public 0.153∗∗∗ 2716.357∗∗∗

(0.052) (418.066)
N 1300 1300

R-squared 0.074 0.013
For all estimations, robust standard errors are clustered at the matching-group level and shown in

brackets.

We observe a pronounced positive impact of action observability on both experi-

mentation intensity and payoffs. Specifically, participants pull the risky arm consid-
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erably more often when monitoring is feasible, resulting in markedly higher payoffs

at the group level.

Extending our analysis beyond mere point estimates, Figure 2 illustrates the em-

pirical distribution of experimentation intensities and group payoffs with the best fit-

ting normal Gaussian model being superimposed over the sample cumulative density

function across the different treatments.

The sample cumulative distribution functions for experimentation intensity and payoffs are shown, by
information condition. The best fitting normal (Gaussian) model is

superimposed over the sample CDF.

Figure 2: Bad News – Empirical CDFs of Experimentation Intensity and Payoffs

Both experimentation intensities and group payoffs significantly exhibit stochas-

tic dominance in the treatment with observable actions over the treatment where ac-

tions are unobservable. This difference is statistically significant, as demonstrated by

Kolmogorov-Smirnov tests, which yield 𝑝-values of 0.001.

We summarize these findings in the following:

Experimentation Participants use the risky arm more when actions are observable.

Payoffs Group payoffs are higher when actions are observable.
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Efficiency Benchmark

To assess the efficiency of participants’ behavior, our analysis concentrates on games

where no breakdown was suffered during the three interaction periods. In the treat-

ment where actions are observable, the average experimentation intensity stands at

0.762 (with a standard deviation of 0.256, N=312), significantly deviating from the

theoretical efficient solution of 1. Out of 312 observations, 137 are in alignment with

the efficient solution. Conversely, for games with unobservable actions, the average

experimentation intensity with 0.591 and a standard deviation of 0.285 for N=312 is

also significantly different from the efficient solution, and only 58 of 312 observations

directly coincide with the efficient solution.

Efficiency Participants free-ride, i.e., they use the risky arm less than what would be

efficient with either observable or unobservable actions.

Consistency of Behavior with Equilibrium

Here too, our analysis focuses on the 312 games where no breakdown was suffered

during the three interaction periods. In Figure 3, we highlight the observed risky play

for each treatment separately, providing a detailed view of how behavior is associated

with equilibrium play. In particular, we plot the fraction of games in which risky was

played 𝑟 times divided by the number of periods 𝑡multiplied by the number of players

𝑛, i.e., 𝑟
𝑡×𝑛 .

When actions are observable, 146 of 312 games are consistent with equilibrium;

among these, the overwhelming majority, namely 137 games, coincide with the effi-

cient solution. By contrast, with hidden actions, play that is consistent with the—now

smaller—equilibrium set significantly decreases, with only 32 of 312 in line with the

theoretical prediction. Unsurprisingly, the difference in equilibrium play by treat-

ment is highly statistically significant with 𝑝-values of 0.001 for both a t-test and a

two-sided Wilcoxon rank-sum test.

This leads to the following:
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The experimentation intensity in games without breakdowns is shown, by information condition.

Figure 3: Bad News – Experimentation Intensity

Equilibrium Behavior is more often consistent with equilibrium when actions are

observable.

Dynamic Evolution of Behavior

We now shift our focus to the dynamics of observed behavior. We are particularly in-

terested in whether, consistently with Bayesian updating, participants increase their

use of the risky arm as the game progresses. Our attention remains on games where

no breakdown is incurred throughout the three periods of interaction. In Figure 4, we

graph the observed experimentation intensities for each period and treatment sepa-

rately, providing a detailed view of how behavior evolves over the course of the game.

While it is unrealistic to expect our participants to calculate posterior beliefs pre-

cisely using Bayes’ rule, we nevertheless anticipate that, in the absence of a break-

down, participants will increasingly use the risky arm as the game progresses, reflect-

ing growing optimism. At the beginning of a game without any breakdowns, partic-

ipants are indeed significantly less likely to choose the risky arm than in later peri-

ods. To examine changes in behavior over time, we employ two-sided t-tests for para-

metric analysis and two-sided Wilcoxon rank-sum (Mann-Whitney) tests for non-
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The average experimentation intensity over time in games without breakdowns is shown, by
information condition.

Figure 4: Bad News – Experimentation Intensity over Time

parametric analysis, treating group averages as independent observations. Regardless

of whether actions were observable, we find that the differences in experimentation

intensities across time are highly statistically significant when comparing behavior in

the very first period to those in either the second or the last period, with 𝑝-values in

both treatments for either test being less than 0.050. In the treatment with observable

actions, t-tests (two-sided Wilcoxon rank-sum tests) produce 𝑝-values of 𝑝12 = 0.004
(0.009), 𝑝13 = 0.015 (0.049), and 𝑝23 = 0.759 (0.515), where 𝑝𝛼𝛽 is the 𝑝-value from

comparing periods 𝛼 vs. 𝛽. With unobservable actions, by contrast, we find 𝑝-values

of 𝑝12 = 0.001 (0.002), 𝑝13 = 0.002 (0.003), and 𝑝23 = 0.546 (0.987), respectively.

Additionally, we also analyze mean experimentation intensities across treatments

for each period. As illustrated in Figure 2, participants engage with the risky arm

more frequently when actions are observable. The differences in all periods are highly

statistically significant, with 𝑝-values of 0.001 for both tests.

We summarize these results as follows:

Belief Updating Conditionally on no breakdown having occurred, participants use

the risky arm more in later periods.
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4 The Good-News Environment

In the previous section, we have seen that experimentation intensity and payoffs are

significantly higher with observable actions. Our game’s equilibrium set is larger, con-

taining the efficient solution, when actions are observable; by contrast, never using

the risky arm is the only equilibrium with unobservable actions. We have indeed

calibrated the parameters of our game in such a way as to generate stark theoretical

predictions illustrating the impact of the informational setting on behavior, which is

known from continuous-time theory, in the starkest possible way. So, in a way, we

have stacked the cards in our favor. In this section, we report on an experiment, where,

in a sense, we do the mirror opposite: We look at a three-period game in the good-

news setting, choosing very simple numerical values for the parameters that addition-

ally have the property that there is no difference in equilibrium predictions depending

on whether actions are observable or not, so as to understand whether the differences

in behavior between the informational settings depend on whether they are predicted

by (perfect Bayesian) equilibrium in the particular game, or whether it is a more gen-

eral feature of behavior. Information now arrives through fully revealing, publicly

observable, breakthroughs instead of breakdowns. Recall from our discussion in the

Introduction that, in a continuous-time, infinite-horizon setting, private information

is good for welfare in a conclusive good-news game (Bonatti and Hörner 2011). We

are thus, in themain, interested inwhether participants will free-ridemore, and there-

fore achieve lower average payoffs, when actions are observable, even though this is

not a feature of perfect Bayesian equilibrium.

In the following subsection, we provide a brief description of our theoretical frame-

work, relegating a complete formal analysis to Section 6.

4.1 The Design

There are two players and the game is played over three periods 𝑡 = 1, 2, 3. If the safe

arm is used, the payoffwill be 0 for certain in that period. Using the risky arm entails a
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cost of 𝑠 = 25 (Experimental $). The risky arm is either good or bad, its type remaining

constant over the three periods of the game. If it is bad, it never yields a positive payoff.

If it is good, it pays out a lump sum of 100 with a probability of 𝜆 = 1/2 in any period it

is used; conditionally on the risky arm’s type, the draws are i.i.d. between players and

across periods. Players do not initially know if the risky arm is good or bad; they know

that Nature (or the computer) makes the risky arm good with a probability of 𝑝0 = 3/4.
After a success is observed, the risky arm is known to be good with probability 1. In

the absence of a success and 𝑛 unsuccessful tries of the risky arm, Bayes’ rule implies

that an observer knowing this information should hold the belief 𝑝𝑛 = 𝑝0(1−𝜆)𝑛
𝑝0(1−𝜆)𝑛+1−𝑝0

that the risky arm is good. Note that 𝑝𝑛 is strictly decreasing in 𝑛. Thus, the updated

posterior belief either jumps to 1 in case of a success, or declines with the number

of unsuccessful tries 𝑛. Arm types are i.i.d. across games. One player’s risky arm is

good if and only if the other one’s is as well. In the treatment with observable actions,

a player observes all of the other player’s previous actions as well as the outcomes of

these actions. In the treatment with unobservable actions, a player observes only if the

other player has received the reward of 100 from the risky arm or not.

One computes that the solution maximizing the sum of the players’ payoffs has

both players playing risky in the first two periods, and safe in the last (conditionally

on no breakthrough having occurred). As ours is a game of purely informational

externalities, we should expect players to use the risky arm too little in equilibrium,

as a player will not take into account that the information they produce (at a private

cost) benefits the other player as well. Clearly, in equilibrium, once a player knows

the risky arm to be good because they have observed a success, they will use the risky

arm in all subsequent periods, as is efficient. Furthermore, one verifies by backward

induction that in equilibrium both players play risky in the first period. Then, in the

second period, exactly one player will play risky, provided no breakthrough has been

observed in the first period. In the third period, conditionally on no breakthrough

having arrived yet, both players play safe.

Our theoretical analysis thus leads us to the following behavioral hypotheses. For
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one, we expect players to be free-riding, i.e., to use the risky arm less than what would

maximize the sum of their payoffs. This is because a player has to bear the full cost

of experimenting with the risky arm, while sharing the benefits of the information

generated. Consequently, we should expect average payoffs to be lower than in the

efficient solution. Even though this is not a feature of the equilibrium set, we further-

more hypothesize that participants will free-ride more, and therefore achieve lower

average payoffs, when actions are observable. Furthermore, while it would be unreal-

istic to presume that our participants could compute posterior beliefs 𝑝𝑛 precisely via

Bayes’ rule, we hypothesize that (in the absence of a breakthrough) players will use

the risky arm less as time progresses.

Implications for Behavior Therefore, our behavioral hypotheses are as follows:

• Participants use the risky arm less than what would be efficient.

• Participants use the risky arm less when actions are observable (although not

an equilibrium feature).

• Participants’ payoffs are lower when actions are observable (although not an

equilibrium feature).

• Updating of beliefs: Conditionally on no breakthrough having been achieved,

participants use the risky arm less in later periods.

4.2 Experiment Details

We collected data from another 110 participants who were also recruited from the Vi-

ennaCenter for Experimental Economics (VCEE) subject pool usingORSEE (Greiner

2015). The average participant earned approximately €15.01 from one randomly se-

lected game. All payments were made in Euros and in cash. As before, we had sim-

ulated all the relevant parameters ahead of time as all our stochastic processes are

Bernoulli processes. These included separate processes for the quality of the risky arm

and the timing of breakthroughs on the risky arm in case it was good. We generated

25 different sets of realizations of the randomparameters controlling the quality of the
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risky arm and the arrivals of the good risky arm. These corresponded to 25 different

games that each of our participants played. As before, in order to make our findings

more easily comparable, we have kept the same realizations for both observable and

hidden actions. Participantswere randomly assigned to groups of twoplayers and ran-

domly rematchedwithin amatching group of six to eight participants after each game.

Each participant was randomly assigned either to the treatment with observable or

hidden actions, and played the 25 games in random order. We again ensured a bal-

anced data-collection process by replicating any order of the 25 games that was used

for a matching group in the treatment with observable actions for a matching group

in the treatment with unobservable actions. Participants could see their fellow group

members’ action choices and payoffs, depending on the randomly assigned treatment,

on their computer screens. In our experimental implementation, we attempted to

keep the good-news environment as close as possible to our bad-news environment.

In the good-news environment, the experimental implementation was similar with

the difference that we implemented a “party emoji” GIF for breakthroughs instead of

the “crying emoji” GIF in the bad-news environment. Similarly, we displayed a “sad

emoji” in the good-news environment instead of the “happy emoji” in the bad-news

environment when a participant had pulled unsuccessfully the risky arm.6 Figure 5

shows how information was displayed, observable actions being illustrated at the top

and unobservable actions—“the ugly”—being highlighted at the bottom.

4.3 Experimental Results

This section is devoted to testing our behavioral hypotheses and the implications for

behavior outlined in Section 4.1. For each of the 25 games, we conducted two treat-

ments (observable and unobservable actions with two-player groups), with 55 groups

in total that were randomly re-matched within a matching group after each game.

As before, tomaintain consistency and ensure comparability, we break the analysis
6The experimental instructions and interfaces can be found in the online appendix as well. The

dynamic interface can be accessed online upon request.
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Figure 5: Good News – Experimental Implementation

into three sections. We start with presenting the summary statistics for both average

experimentation intensity and group payoffs. Then, we begin our main analysis by

presenting the aggregate experimental results focusing first on the distribution of the

experimentation intensity and group payoffs. Next, we focus on efficiency and study

how behavior relates to the efficient solution. Lastly, we delve into behavior over time,

in particular participants’ updating of beliefs in games where no breakthrough has

occurred. In Section 5, we complement our analysis of this section with a robustness

test by reporting results from OLS regressions with random effects and clustering of

standard errors at thematching-group level. Wefindno effect of the number andorder

of games previously played on participants’ behavior, and results reported throughout

the paper remain robust.

Experimentation and Payoffs

Aswe have argued in Section 4.1, wemight expect average experimentation intensities

as well as (group) payoffs to be lower in the treatment when monitoring is feasible.

Recall that the experimentation intensity is calculated for each player until the time of

a first breakthrough by any player in a group or the end of the game, whichever arrives

first. Table II lists the observed mean experimentation intensities and average sum of

payoffs, using group averages across games for the two treatments.
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Table II: Good News – OLS Estimations

Experimentation Intensity Payoffs

Intercept 0.764∗∗∗ 54.037∗∗∗

(0.018) (3.960)
Public −0.078∗∗ −8.573∗

(0.028) (4.580)
N 1375 1375

R-squared 0.024 0.001
For all estimations, robust standard errors are clustered at the matching-group level and shown in

brackets.

Thus, we find a negative effect of the observability of actions on both experimen-

tation intensity and payoffs. This is the first piece of evidence that participants tend

to shirk more when it comes to the production of information when actions are ob-

servable. Participants use the risky arm significantly less whenmonitoring is possible,

leading to significantly lower payoffs at the group level.

Moving beyond point estimates, Figure 6 plots the empirical distribution of exper-

imentation intensities and group payoffs with the best fitting normal Gaussian model

superimposed over the sample cumulative density function by treatment.

The ample cumulative distribution functions for experimentation intensity and payoffs are shown, by
information condition. The best fitting normal (Gaussian) model is

superimposed over the sample CDF.

Figure 6: Good News – Empirical CDFs of Experimentation Intensity and Payoffs

While the effect of monitoring is less nuanced when it comes to payoffs compared
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to experimentation intensities, both measures of interest are significantly higher in

stochastic dominance in the treatment with unobservable actions than in the treat-

ment with observable actions: Kolmogorov Smirnov tests produce 𝑝-values of 0.001.

We summarize our findings in the following:

Experimentation Participants use the risky arm less when actions are observable.

Payoffs Group payoffs are lower when actions are unobservable.

Efficiency Benchmark

To investigate whether participants behaved efficiently, we focus on games in which

no breakthrough occurs over the three periods of interaction. For observable actions,

the average experimentation intensity with 0.542 (with a standard deviation of 0.199,

N=196) is significantly different from the planner’s solution of 2/3. 25 of 196 obser-

vations are compatible with the efficient solution. For unobservable actions, by con-

trast, the average experimentation intensity coincides with the efficient solution (with

a standard deviation of 0.184, N=184), while only 22 out of 189 observations coincide

with the efficient solution.

This leads us to state the following:

Efficiency Participants use the risky arm less than what would be efficient only with

observable actions. By contrast, when actions are unobservable the average experi-

mentation intensity coincides with the efficient solution.

Dynamic Evolution of Behavior

We now turn to the dynamics of observed behavior. In particular, we are curious to

see whether participants use the risky arm less as the game progresses. Here again, we

focus on games inwhich no breakthrough occurs over the three periods of interaction.

In Figure 7, we plot the observed experimentation intensity period-by-period and for

each treatment separately.
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The average experimentation intensity over time in games without breakthroughs are shown, by
information condition.

Figure 7: Good News – Experimentation Intensity over Time

Obviously, we do not expect that participants compute posterior beliefs 𝑝𝑛 pre-

cisely via Bayes’ rule; however, wewould expect that, in the absence of a breakthrough,

participants will use the risky arm less as time progresses as they gradually grow pes-

simistic over time.

To test for differences over time parametrically, we apply two-sided t-tests and

to test for differences non-parametrically, we apply two-sided Wilcoxon rank-sum

(Mann-Whitney) tests, using group averages as independent observations. Irrespec-

tive of the observability of actions, the differences in experimentation intensities are

highly statistically significant. The corresponding 𝑝-values in both cases are 0.001. At

the outset of a given game without any breakthrough, participants use the risky arm

significantly more often compared to later periods, the largest drop of experimenta-

tion being observed in the very last period of the game.

In addition, we also compare mean experimentation intensities across treatments

period-by-period. As can be seen in Figure 7, participants use, on average, the risky

arm more frequently in the treatment with unobservable actions. Differences are

highly statistically significant in the last two periods with 𝑝-values of 0.001 for ei-

ther test. In the very first period, differences are significant at the 5%-level, the t-test
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(Wilcoxon rank-sum test) produces a 𝑝-value of 0.022 (0.029).

We summarize these results as follows:

Belief Updating Conditionally on no breakthrough having been achieved, partici-

pants use the risky arm less in later periods.

5 Econometric Robustness Tests

As a further robustness test and to complement our previous analyses and key ele-

ments discussed so far in Sections 2, 3, and 4, we run ordinary least-square regressions

with random effects controlling for learning effects. In particular, we regressed exper-

imentation intensity and individual payoffs on the treatment dummy Public, which is

0 for the private-information (unobservable-actions) treatment and 1 for the public-

information (observable-actions) treatment. Recall that participants played the 25

games in random order and any order of these games that was used for participants in

the public information sessions was replicated for participants in the private informa-

tion sessions. In order to verify that participants treated the games they successively

played as independent games rather than as parts of a larger super-game, we define a

weighted learning function {𝑔𝑜} = {1/𝑜} where 𝑜 (𝑜 ∈ {1,⋯ , 25}) corresponds to the

random order in which each participant was exposed to each game. All regressions

control for trends over time using this weighted learning function. The results do not

qualitatively change when we replace the learning function with a linear version such

that {𝑔𝑜} = {𝑜}. Further, the results do not qualitatively change either when we in-

clude controls for age, gender, field of study as well as attempts needed to correctly

answer the quiz questions at the start of the experiment. To account for the fact that

behavior within matching groups is not independent, we treat each matching group

as our units of statistically independent observations and cluster standard errors by

matching group.

In the bad-news environment, we find a strong positive effect of public information

on experimentation intensity across all games, games with and without breakdowns,
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Table III: OLS Estimations with Random Effects of
Experimentation Intensity and Payoffs.

Experimentation Intensity Individual
All No Breakdown Until Breakdown Payoffs

or Breakthrough or Breakthrough

Panel A: The Bad-News Environment

Intercept 0.595∗∗∗ 0.584∗∗∗ 0.612∗∗∗ 406.154
(0.046) (0.050) (0.045) (285.930)

Public 0.158∗∗∗ 0.170∗∗ 0.139∗∗ 1368.876∗∗∗

(0.062) (0.069) (0.059) (216.667)
Learning 0.033 0.045 0.015 793.306

(0.031) (0.030) (0.058) (1545.339)
𝜎𝜖 0.291 0.269 0.306 8583.367
𝜎𝑢 0.216 0.216 0.218 0
N 2600 1248 1352 2600
(Between) R-squared 0.113 0.124 0.082 0.187

Panel B: The Good-News Environment

Intercept 0.764∗∗∗ 0.662∗∗∗ 0.798∗∗∗ 27.643∗∗∗

(0.017) (0.025) (0.018) (2.154)
Public −0.076∗∗∗ −0.124∗∗∗ −0.059∗ −4.286∗

(0.028) (0.034) (0.031) (2.291)
Learning 0.027 0.020 0.033 -4.090

(0.037) (0.027) (0.056) (10.781)
𝜎𝜖 0.306 0.222 0.316 79.642
𝜎𝑢 0.135 0.162 0.134 0
N 2750 770 1980 2750
(Between) R-squared 0.063 0.107 0.037 0.043

For all estimations, robust standard errors are clustered at the session level and shown in brackets.
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent

level

and payoffs. By contrast, in the good-news environment, we find a strong negative

effect of public information on experimentation intensity across all games, gameswith

and without breakthroughs, and payoffs.
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6 Theoretical Analysis

In Sections 2.1 and 4.1, we provided intuitive explanations for our identification strat-

egy. In this section, we elaborate and present a formal analysis.

6.1 The Bad-News Environment

The solution concept is that of perfect Bayesian equilibrium.7 Sequential rationality

is verified by backward induction. After a breakdown has been publicly observed,

the risky arm is known to be bad, so that playing safe is the dominant action. Subse-

quently, we thus verify sequential rationality conditionally on no breakdown having

been observed. We apply backward induction to this purpose, and normalize the cost

of a breakdown to 1.8 We write 𝑝𝑖(𝑡) ≡ 𝑝𝑛 for player 𝑖’s Bayesian belief in period

𝑡 ∈ {1, 2, 3}, if 𝑛 = ∑𝑡−1
𝑧=1(𝑘𝑖,𝑧 + 𝑘̂−𝑖,𝑧), where we write 𝑘𝑞,𝑧 = 1 (𝑘𝑞,𝑧 = 0) if player

𝑞 ∈ {𝑖, −𝑖} has used the risky (safe) arm in period 𝑧 without suffering a breakdown,

and 𝑘̂−𝑖,𝑧 denotes the action that player 𝑖 thinks that player −𝑖 has taken in period 𝑧. In
the case of observable actions, 𝑘̂−𝑖,𝑧 ≡ 𝑘−𝑖,𝑧; in the case of unobservable actions, 𝑘̂−𝑖,𝑧

is pinned down by player 𝑖’s expectations, which are correct in equilibrium.

In the last period 𝑡 = 3, players face a myopic decision problem, where playing

risky is a best response if and only if 𝑝(𝑡 = 3)𝜆 ≤ 𝑠. For our parameters, 𝑝𝑛𝜆 < 𝑠 if
and only if 𝑛 ≥ 2.

Indeed, 𝑝2𝜆 < 𝑠 implies that, after a history of two tries without a breakdown,

playing risky becomes a dominant action. This pins down play in all equilibrium can-

didates in which 𝑘𝑖,1 + 𝑘−𝑖,1 = 2.
Now, let us assume that 𝑘𝑖,1 +𝑘−𝑖,1 = 1. Suppose that 𝑘−𝑖,2 = 1 (so that 𝑘𝑖,3 +𝑘−𝑖,3 =

7Subgame perfection has no bite as an equilibrium refinement, because the game starts with an
initial move of Nature, which determines the quality of the risky arm; the game therefore admits of no
proper subgames.

8For our parameters, this implies that 𝑠 = 0.142857. Recall furthermore that 𝜆 = 1/4, and 𝑝0 =
0.676392.
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2). In this case, 𝑘𝑖,2 = 1 is a best response if and only if

𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆)2)𝑠 − 𝑝1𝜆(1 − 𝜆)2 ≥? (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1𝜆(1 − 𝜆)

⟺ 𝑝1 ≤! 𝑠
𝜆

1
1 − (1 − 𝜆)(𝜆 − 𝑠) ,

which holds for our parameters. Thus, 𝑘𝑖,2+𝑘−𝑖,2 = 2 is incompatible with equilibrium,

whether actions be observable or unobservable.

Next, let us assume that 𝑘−𝑖,2 = 0. If actions are observable, 𝑘𝑖,2 = 1 will induce

𝑘𝑖,3 +𝑘−𝑖,3 = 2, and 𝑘𝑖,2 = 0 will induce 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. Thus, 𝑘𝑖,2 = 1 is a best response

if and only if

𝑠 − 𝑝1𝜆 + (1 − 𝑝1𝜆)𝑠 − 𝑝1𝜆(1 − 𝜆) ≥? 0

⟺ 𝑝1 ≤? 𝑠
𝜆

2
2 − (𝜆 − 𝑠) ,

which is not satisfied for our parameters. Thus, 𝑘𝑖,2 = 0 is the unique best response to

𝑘−𝑖,2 = 0 if actions are observable, inducing 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. Now suppose that actions

are unobservable. We have already shown that 𝑘𝑖,2 = 1 (inducing 𝑘𝑖,3 = 𝑘−𝑖,3 = 1)
cannot happen on the equilibrium path. Now, 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 can be

part of an equilibrium if and only if

0 ≥? 𝑠 − 𝑝1𝜆 + (1 − 𝑝1𝜆)𝑠 − 𝑝1𝜆(1 − 𝜆)

⟺ 𝑝1 ≥! 𝑠
𝜆

2
2 − (𝜆 − 𝑠) ,

which is satisfied for our parameters, as we have seen.

Thus, in conclusion, after a history such that 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, both 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 0 and 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1 are compatible with equilibrium,

whether actions are observable or unobservable. It is this non-uniqueness of equilib-

rium play after histories 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, which stands in contrast to our good-news

game, andwhichwill lead to different first-period equilibriumpredictions, depending

on whether actions are observable or unobservable, as we shall see below.
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Let us turn to histories such that 𝑘𝑖,1 = 𝑘−𝑖,1 = 0. Clearly, 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0,
while 𝑘𝑖,2 = 1 is not compatible with equilibrium, because 𝑠 − 𝑝0𝜆 < 0 implies that

𝑖 has an incentive to deviate to 𝑘𝑖,2 = 0. Can 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1 occur in

equilibrium? If actions are observable (unobservable), a deviation by player 𝑖 in 𝑡 = 2
leads to a path of play of 𝑘𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, with 𝑘−𝑖,2 = 1 (𝑘𝑖,2 = 𝑘𝑖,3 = 0, with

𝑘−𝑖,2 = 𝑘−𝑖,3 = 1), giving the deviator 𝑖 a payoff of 0 in both cases; such a deviation is

therefore profitable if and only if

0 >? 𝑠 − 𝑝0 + (1 − 𝑝0 + 𝑝0(1 − 𝜆)2)𝑠 − 𝑝0(1 − 𝜆)2𝜆

⟺ 𝑝0 >! 𝑠
𝜆

2
1 + 𝑠(2 − 𝜆) + (1 − 𝜆)2 ,

which holds for our parameters. The only equilibrium candidate remaining is thus

𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0; this clearly is compatible with equilibrium as 𝑠−𝑝0𝜆 < 0.
Let us now move to the first period 𝑡 = 1, and assume that actions are observable.

By our previous analysis, there are four equilibrium candidates: (1.) the utilitarian

optimum, namely 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1, (2.) 𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 1 and 𝑘−𝑖,1 = 0, (3.) 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, and
(4.) 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, while 𝑘𝑖,1 = 1. Candidate (4.) can be ruled

out right away, as 𝑠 − 𝑝0𝜆 < 0, so that player 𝑖 has an incentive to deviate in the first

period, whether actions are observable or unobservable.

Let us turn to candidate (1.). With observable actions, a unilateral deviation by 𝑖
in the first period can be “punished” with the continuation equilibrium 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 0, making the deviation unprofitable; indeed, in the absence of a devia-

tion, players get the utilitarian optimum, which is strictly greater than 0, whereas, by

deviating, 𝑖 receives 0. For unobservable actions, however, this “punishment equilib-

rium” is not available, and (1.) is an equilibrium if and only if

𝑠 − 𝑝0𝜆 − 2𝑝0𝜆(1 − 𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)(𝑠 + 𝜆) + 𝑝0𝜆(1 − 𝜆)3(𝜆 − 𝑠) ≥? 0

⟺ 𝑝0𝜆[1 − (−𝜆)(𝜆 − 𝑠)(1 + (1 − 𝜆)2)] ≤? 𝑠,
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which is violated for our parameters. Therefore, the utilitarian optimum (1.) is an

equilibrium if and only if actions are observable.

Next, let us analyze candidate (2.). If actions are observable (unobservable), a

first-period deviation by player 𝑖 who is supposed to play risky in that period leads to

play of 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3 = 0, with

𝑘−𝑖,2 = 𝑘−𝑖,3 = 1). In either case, this deviation is profitable if and only if

0 >? 𝑠 − 𝑝0𝜆 + (1 − 𝑝0𝜆)𝑠 − 𝑝0(1 − 𝜆)𝜆 + (1 − 𝑝0 + 𝑝0(1 − 𝜆)3)𝑠 − 𝑝0(1 − 𝜆)3𝜆,

which holds for our parameters. Thus, candidate (2.) is eliminated, whether actions

be observable or unobservable.

Finally, let us turn to candidate (3.). If actions are observable, a first-period de-

viation leads to play of either 𝑘𝑖,1 = 1, with 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0
or 𝑘−𝑖,1 = 0 with 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. In the latter case, the deviation is

unprofitable as 𝑠 − 𝑝0𝜆 < 0; in the former, it is unprofitable by the same argument as

in the previous paragraph. With unobservable actions, deviating in only one period

is unprofitable as 𝑠 − 𝑝0𝜆 < 0. A deviation to 𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3 = 1 is profitable if and

only if

0 <? 𝑠 − 𝑝0𝜆 + (1 − 𝑝0 + 𝑝0(1 − 𝜆))[𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1(1 − 𝜆)𝜆].

Yet, 𝑠 −𝑝0𝜆 < 0, and, as we have shown above, 𝑠 −𝑝1𝜆+ (1 −𝑝1 +𝑝1(1 − 𝜆))𝑠 −𝑝1(1 −
𝜆)𝜆 < 0. We thus conclude that candidate (3.) is an equilibrium, whether actions be

observable or unobservable.

We summarize our findings in the following

Proposition 1. If actions are unobservable in our bad-news game, players uniquely

always play safe in perfect Bayesian equilibrium. This remains an equilibrium with ob-

servable actions. With observable actions, the utilitarian optimum (in which players

play risky until a breakdown arrives) is an additional equilibrium, which is supported

by the threat of always playing safe in case of a deviation.
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6.2 The Good-News Environment

We now turn to our good-news game. Sequential rationality is verified by backward

induction. In the subsequent calculations, we normalize the value of a breakthrough

success to 1. Clearly, playing risky is the dominant action after a breakthrough success

has been observed. Thus, in the following, assume that no success has been observed

yet. We shall write 𝑝𝑖(𝑡 = 𝜏) ≡ 𝑝𝑛 for player 𝑖’s Bayesian belief in period 𝜏 ∈ {1, 2, 3},
if 𝑛 = ∑𝜏−1

𝑧=1(𝑘𝑖,𝑧 + 𝑘̂−𝑖,𝑧), where we write 𝑘𝑞,𝑧 = 1 (𝑘𝑞,𝑧 = 0) if player 𝑞 ∈ {𝑖, −𝑖} has—

unsuccessfully—used the risky (safe) arm in period 𝑧, and 𝑘̂−𝑖,𝑧 denotes the action that

player 𝑖 thinks that player −𝑖 has taken in period 𝑧. In the case of observable actions,

𝑘̂−𝑖,𝑧 ≡ 𝑘−𝑖,𝑧; in the case of unobservable actions, 𝑘̂−𝑖,𝑧 is pinned down by player 𝑖’s
expectations, which are correct in equilibrium.

In the last period 𝑡 = 3, players face a myopic decision problem, where playing

risky is a best response if and only if 𝑝(𝑡 = 3)𝜆 ≥ 𝑠. For our parameters, 𝑝𝑛𝜆 ≥ 𝑠 if
and only if 𝑛 ≤ 1.

Moving to the penultimate period 𝑡 = 2, our previous step implies that, after a

history in which both have unsuccessfully played risky in the first period, both players

will play safe in the last period in the absence of a success, since 𝑝(𝑡 = 3) ≤ 𝑝(𝑡 =
2) = 𝑝2. Therefore, after both players have played risky in the first period, it is a best

response for player 𝑖 to play risky in 𝑡 = 2 if and only if

−𝑘𝑖,2𝑠 + 𝑝(𝑡 = 2)𝜆[𝑘𝑖,2(1 + 𝜆 − 𝑠) + 𝑘̂−𝑖,2(1 − 𝜆𝑘𝑖,2)(𝜆 − 𝑠)] ≥ 0,

which is equivalent to

𝑝(𝑡 = 2) ≥ 𝑠
𝜆

1
1 + (1 − 𝜆𝑘̂−𝑖,2)(𝜆 − 𝑠)

.
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For our parameters,9

𝑠
𝜆

1
1 + (1 − 𝜆)(𝜆 − 𝑠) > 𝑝2 > 𝑠

𝜆
1

1 + 𝜆 − 𝑠.

Thefirst of these inequalities implies that the utilitarian optimum, which requires both

players to experiment in both periods 𝑡 = 1, 2, is not an equilibrium. Both inequalities

together imply that, if 𝑘𝑖,1 + 𝑘−𝑖,1 = 2, safe and risky are mutually best responses in

period 𝑡 = 2.
It remains to analyze best responses after such histories that 𝑘𝑖,1+𝑘−𝑖,1 < 2. If 𝑘𝑖,1+

𝑘−𝑖,1 = 1, the previous analysis implies that equilibrium continuation play will be one

of the following: 𝑘𝑖,2+𝑘−𝑖,2 = 2 or 𝑘𝑖,2+𝑘−𝑖,2 = 1 (both followed by 𝑘𝑖,3+𝑘−𝑖,3 = 0 in the

absence of a success). So suppose that 𝑘𝑖,2 = 1 and 𝑘−𝑖,2 = 0. As, for our parameters,

𝑝1 > 𝑠
𝜆 > 𝑠

𝜆
1

1+(1−𝜆)(𝜆−𝑠) , −𝑖 prefers to deviate to 𝑘−𝑖,2 = 1. Since this deviation does

not affect continuation play with observable actions, it remains a profitable deviation,

whether actions be observable or not. Let us thus turn to the possibility of 𝑘𝑖,2+𝑘−𝑖,2 =
0, whichwould be followed by 𝑘𝑖,3+𝑘−𝑖,3 = 2. Suppose first that actions are observable.

In this case, either player 𝑖 prefers to bring his experimentation forward in time, as

𝑝1 > 𝑠
𝜆 , i.e., one verifies that 𝑖 prefers 𝑘𝑖,2 = 1 and 𝑘−𝑖,2 = 𝑘𝑖,3 + 𝑘−𝑖,3 = 0. If actions

are unobservable, the same deviation leads to 𝑘𝑖,2 = 1 leads to 𝑘−𝑖,2 = 𝑘𝑖,3 = 0, yet
𝑘−𝑖,3 = 1. Since −𝑖’s action choice in the last period does not impact 𝑖’s payoff, the

deviation remains profitable even if actions are unobservable. In contrast, 𝑘𝑖,2+𝑘−𝑖,2 =
2 (followed by 𝑘𝑖,2+𝑘−𝑖,2 = 0) is compatible with equilibrium as𝑝1 > 𝑠

𝜆 > 𝑠
𝜆

1
1+(1−𝜆)(𝜆−𝑠) .

Thus, in summary, after a history such that 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, equilibrium uniquely calls

for 𝑘𝑖,2 + 𝑘−𝑖,2 = 2, followed by 𝑘𝑖,3 + 𝑘−𝑖,3 = 0, irrespectively of whether actions are

observable or unobservable.

We are now ready to move up to the initial period 𝑡 = 1. By our preceding anal-

ysis, there are three types of candidate equilibria, depending on the experimentation

intensity in the first period: (1.) 𝑘𝑖,1 + 𝑘−𝑖,1 = 2, followed by 𝑘𝑖,2 + 𝑘−𝑖,2 = 1, and
𝑘𝑖,3 + 𝑘−𝑖,3 = 0; (2.) 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, followed by 𝑘𝑖,2 + 𝑘−𝑖,2 = 2, and 𝑘𝑖,3 + 𝑘−𝑖,3 = 0;

9The normalization of the breakthrough value to 1 implies 𝑠 = 1/4. Recall that 𝜆 = 1/2 and 𝑝0 = 3/4.
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(3.) 𝑘𝑖,1 + 𝑘−𝑖,1 = 0, followed by 𝑘𝑖,2 + 𝑘−𝑖,2 = 2, and 𝑘𝑖,3 + 𝑘−𝑖,3 = 0. One computes

that, in candidate equilibrium (3.), a player wants to deviate to playing risky in the

first period, thereby inducing play according to candidate (2.), if and only if

−𝑠 + 𝑝0𝜆(1 + 2(𝜆 − 𝑠)) − (1 − 𝑝0𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)] >?

−𝑠 + 𝑝0𝜆[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)]

⟺ −𝑠 + 𝑝0𝜆[1 + (𝜆 − 𝑠)(1 − 𝜆)2] >! 0,

which is verified for our parameters. Therefore, candidate (3.) cannot be an equilib-

rium, whether actions are observable or unobservable.

To checkwhether candidate (2.) is an equilibrium, assume that player 𝑖 is supposed
to play 𝑘𝑖,1 = 0. As 𝑝0 > 𝑠

𝜆 , we have to deter a deviation to 𝑘𝑖,1 = 1. Such a deviation

leads to a play of 𝑘𝑖,1 = 𝑘−𝑖,1 = 1, 𝑘𝑖,2 = 1, 𝑘−𝑖,2 = 0, and 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (if actions are

observable), or 𝑘𝑖,1 = 𝑘−𝑖,1 = 1, 𝑘𝑖,2 = 0, 𝑘−𝑖,2 = 1, and 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (this latter path

being possible whether actions are observable or unobservable). If continuation play

is given by the former option, the deviation is unprofitable if and only if

2𝑝0𝜆(𝜆 − 𝑠) − (1 − 𝑝0𝜆)𝑠 + 𝑝0(1 − 𝜆)𝜆[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)] ≥?

−𝑠+𝑝0𝜆[1+ 2(𝜆− 𝑠) + 2(1−𝜆)(𝜆− 𝑠)] − (1−𝑝0 +𝑝0(1 −𝜆)2)𝑠 +𝑝0𝜆(1−𝜆)2(1 +𝜆− 𝑠)

⟺ 𝑝0 ≤? 𝑠
𝜆,

which is not the case for our parameters; thus, the deviation is profitable. Now, if

continuation play is given by the latter option, the deviation is unprofitable if and only

if

2𝑝0𝜆(𝜆 − 𝑠) − (1 − 𝑝0𝜆)𝑠 + 𝑝0(1 − 𝜆)𝜆[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)] ≥?

−𝑠 + 𝑝0𝜆[1 + 2(𝜆 − 𝑠) + 2(1 − 𝜆)(𝜆 − 𝑠)] + 𝑝0𝜆(1 − 𝜆)2(𝜆 − 𝑠)

⟺ 𝜆 ≥? 2,
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which is, of course, violated, 𝜆 being a probability. We therefore conclude that candi-

date (2.) is not an equilibrium either, whether actions be observable or unobservable.

It remains to show that candidate (1.) is indeed an equilibrium. To do so, first let

actions be observable. The latter (former) calculations from the previous paragraph

show that the player who does not play risky (who plays risky) in the second period

does not want to deviate. We can thus conclude that candidate (1.) is indeed an equi-

librium for observable actions. Next, assume that actions are unobservable. The same

argument as above shows that a deviation by the player who plays safe in the second

period is unprofitable. A deviation by the player who is supposed to play risky in

the second period leads to the path of play 𝑘𝑖,1 = 0, 𝑘−𝑖,1 = 1, 𝑘𝑖,2 = 1, 𝑘−𝑖,2 = 0,
𝑘𝑖,3 = 𝑘−𝑖,3 = 0; such a deviation is therefore unprofitable if and only if

−𝑠+𝑝0𝜆[1+2(𝜆−𝑠)+2(1−𝜆)(𝜆−𝑠)]−[1−𝑝0+𝑝0(1−𝜆)2]𝑠+𝑝0(1−𝜆)2𝜆(1+𝜆−𝑠) ≥?

2𝑝0𝜆(𝜆 − 𝑠) − (1 − 𝑝0𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)(1 + 𝜆 − 𝑠)

⟺ −𝑠 + 𝑝0𝜆[1 + (1 − 𝜆)2(𝜆 − 𝑠)] ≥! 0,

which holds for our parameters. We can thus conclude that candidate (1.) is an equi-

librium for unobservable actions as well.

We summarize our findings in the following

Proposition 2. In perfect Bayesian equilibrium in our good-news game, both players

use the risky arm in the first period. Conditionally on no breakthrough having been

observed, exactly one player plays risky in the second period, while they both play safe in

the last period. There is no difference in the equilibrium prediction whether actions are

observable or unobservable.
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7 Discussion and Final Thoughts

More on Economic Significance

Teams and Partnerships The economic landscape is increasingly shaped by team-

work, moving from individual efforts to collective action, as seen in research and busi-

ness practices. This shift emphasizes collaboration, but it also introduces challenges

like managing joint ventures and maintaining mutual trust amidst the complexities

of shared responsibilities. Success depends on discerning genuine efforts from free-

riding, with failure to do so potentially leading to skepticism, decreased participation,

and even dissolution of the team. Extensive management literature, including works

by Luo (2002) and Madhok (2006), explores these dynamics, noting especially that

larger teams face greater risks of opportunistic behavior. In our setting, the team-

produced good is the information, which benefits all the players.

Public Goods This paper presents a theoretical framework and an experiment illus-

trating how teams navigate uncertainties surrounding outcomes, and explores the im-

pact of the observability of actions on the prevailing free-riding incentives. The frame-

work’s applicability extends to both intra-firm settings, such as research teams, and

inter-firm collaborations, such as R&D joint ventures and alliances, where the public

good produced is useful information. Collaborative research is widely acknowledged

for its benefits, andR&D joint ventures are encouraged under bothUS andEU compe-

tition laws and funding programs. Nonetheless, firms considering investment in such

projects must contend with the challenges associated with contributing to a public

good.

Good-NewsEnvironment In our good-news environment, we study a gameof strate-

gic experimentation in which information arrives through public breakthroughs. This

setting mimics real-world scenarios where new but risky technologies are introduced,

such as novel medical treatments, innovative manufacturing processes, or resource

exploration. Understanding the trade-offs in public information production is cru-

cial, especially in the context of innovation and social learning. Innovators often take
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on the initial risks and costs of experimenting with new ideas, thereby generating

beneficial informational externalities for the broader community. This dynamic un-

derscores the significant role that pioneers play in fostering progress and knowledge

dissemination, highlighting the importance of their contributions to the collective

understanding and advancement in various fields. In all these cases, the benefits of

shared information from experimentation are evident. Examples include fishing lo-

cations being observable by others, consumers researching to find the best products,

farmers choosing between traditional and genetically modified crops, and graduate

students deciding on their research fields. These examples highlight how shared in-

formation influences decision-making across various contexts.

Recent Study andGender Pay Gap Recently, Bardhi, Guo, and Strulovici (2023) in-

vestigate whether workers from social groups with similar productivity levels achieve

comparable lifetime earnings, focusing on the impact of early-career discrimination.

They find that in environments where failures are emphasized—that is, breakdowns—

such discrimination leads to significant lifetime earnings gaps among equally produc-

tive groups. Conversely, in environments focusing on successes—i.e., breakthroughs—

early discrimination tends to self-correct, ensuring comparable earnings. This out-

come remains consistent across varying labor market sizes, wage flexibility, learning

outcomes, productivity investments, and even with employers’ misjudged beliefs. Im-

portantly, their theoretical findings are consistent with the persisting gender pay gap

among surgeons documented by Lo Sasso, Richards, Chou, and Gerber (2011) and

Sarsons (2019).

Related Literature

This paper is related to several strands of literature, which we will discuss in turn.

Strategic Experimentation First, our theoretical framework can be viewed as a mo-

del of experimentation. Until fairly recently, the literature focussed on the trade-off

of an individual decision maker who acts in isolation. Bolton and Harris (1999) and

Keller, Rady, and Cripps (2005) have extended the individual decision problem to a
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multi-player framework. Since then this literature is steadily growing. For example,

Klein and Rady (2011), Klein (2013), Keller and Rady (2015), and Hörner, Klein, and

Rady (2022) study various bandit problems in which different players may choose

different arms.10 While free-riding is a central element in these studies as well, play-

ers’ actions are observable. Several studies analyzed experimentation in teams where

the outcome of each player’s action is unobservable while their actions are observ-

able (Rosenberg, Solan, and Vieille 2007, Murto and Välimäki 2011, Hopenhayn and

Squintani 2011). Closest to our paper are Bonatti and Hörner (2011) and Bonatti and

Hörner (2017), who study settings where actions are not observed, but outcomes are.

Free-Riding in Groups Second, our setting is related to an old literature on free-

riding in groups that emerged with Olson Jr (1971) and Alchian and Demsetz (1972),

and was further explored by Holmstrom (1982), Legros and Matthews (1993) and

Winter (2004). Our framework relates to this literature on free-riding in that it studies

the timing of free-riding in teams that are working on a project whose outcome is

uncertain. For example, it can be viewed as a dynamic version of moral hazard in

teams with uncertain outcome.

Dynamic Contributions to Public Goods Third, our paper ties into the literature

on dynamic contributions to public goods, starting with Admati and Perry (1991),

Fershtman and Nitzan (1991), Marx and Matthews (2000), Lockwood and Thomas

(2002) and Compte and Jehiel (2004). Relevant to this study, especially for our good-

news environment, is Fershtman andNitzan (1991), who analyze equilibria in a setting

with complete information and find that observability worsens free-riding. In a lab-

oratory setting, Battaglini, Nunnari, and Palfrey (2016) test Battaglini, Nunnari, and

Palfrey (2014) by investigating a game of dynamic contributions to a durable public

good where the stock of the public good builds up over time. In contrast to our set-

ting, only conventional payoff externalities—and not informational externalities—are

studied.
10For a boundedly rational approach to multi-armed bandits and imitation learning, see Schlag

(1996, 1998, and 1999).
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Experimentation Experiments Lastly, our paper is embedded in an emerging liter-

ature that studies behavior in experiments of experimentation both individually and

in groups. We are aware of only four other experimental investigations of a strategic-

experimentation problem with bandits. Hoelzemann and Klein (2021) experimen-

tally implement a dynamic public-good problem where information about agents’

common state of the world is dynamically evolving. Observed behavior is consis-

tent with free-riding because of strategic concerns, and participants adopt non-cut-

off behavior and frequent switches of action. Boyce, Bruner, and McKee (2016) study

a setting with ambiguity concerning the type of the risky arm to test strategic free-

riding in a two-player, two-period, game. Players are asymmetric in their costs in

that one player was known to have lower opportunity costs for playing risky than the

other, so that it was clear which player ought to play the free-rider in the first pe-

riod. Hudja (2019) experimentally implements Strulovici (2010)’s collective experi-

mentationmodel. An individual experimentation problem is compared to a collective

experimentation problem where groups of three players face a majority-vote. Hoelze-

mann, Manso, Nagaraj, and Tranchero (2024) study an environment where players

must explore across different options with varying but uncertain payoffs. While in-

formative signals, interpreted as data, can typically reduce uncertainty and improve

welfare, in their setting it can instead decrease individual and group payoffs. When

data highlights sufficiently attractive but dominated options, it can crowd-out explo-

ration and thus lower payoffs as compared to when no data is provided. Importantly,

empirical evidence from the field of genetic research provides a real-world confirma-

tion of their framework and shows that data on genetic targets of medium promise

can significantly increase the delay of valuable discoveries.

Other papers that carry out experimental tests of bandit problems consider single-

agent problems, where participants act in isolation. Banks, Olson, and Porter (1997)

experimentally implement a bandit setting with simple Bernoulli payout distribu-

tions, and test whether participants value information gained through experimen-

tation. Meyer and Shi (1995) and Gans, Knox, and Croson (2007) study choice pat-
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terns that are consistent with a list of simple decision rules. Meyer and Shi (1995) test

decision-making under ambiguity and use experimental data to generate hypotheses

about participants’ possible heuristics. Gans, Knox, and Croson (2007) consider sev-

eral simple discrete-choice models in a two-armed bandit set-up. Anderson (2001,

2012) uses arms with payout distributions in his experiments and finds that partic-

ipants experiment sub-optimally, and are willing to pay more for receiving perfect

information than theory would predict. Banovetz and Oprea (2023) analyzes the up-

shot of an “automata” approach to bounded rationality using a bandit experiment.

Hudja andWoods (2022) studies individual behavior inmulti-armed bandit problems

and implement four bandit problems that vary based on the horizon and number of

bandit arms. They find that most participants are best fit by either a simple probabilis-

tic ‘win-stay lose-shift’ strategy or standard reinforcement learning. Hudja, Woods,

andGately (2023) investigates behavior in settings with forced experimentationwhere

participants are randomly blocked from implementing a specific option. In contrast

to this study, there are no strategic links across players.

Free-Riding on Information

Understanding the trade-offs in generating public information is a first-order topic,

particularly as innovation and social learning often originate from pioneers. These

individuals take on the initial costs of exploring new methods, thereby generating

benefits for a wider audience through informational spillovers. This dynamic is evi-

dent in various domains, including R&D, resource discovery, and drug trials, where

the efforts of a few can inform and benefit many. R&D, in particular, is universally

acknowledged as a pivotal driver of economic expansion, as highlighted by Romer

(1990) and Grossman and Helpman (1993). The productivity and innovative capacity

of an economy are heavily reliant on the continuous accumulation of R&D knowledge

and the broader base of existing knowledge (Griliches 1988 and Coe and Helpman

1995). In all these environments we have numerous instances where the communal

sharing of information from experiments is commonplace. In this paper, we provide
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the first experimental examination of the impact of observable and hidden actions

on strategic experimentation, outlining the conditions and the environments under

which the observability of actions leads players to free-ride rather than engage in so-

cially beneficial exploration.
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